Simulink® Coder™
Target Language Compiler

<4

MATLAB&SIMULINK?

R2017b >) MathWorks:

X o)

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services
User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coder™ Target Language Compiler
© COPYRIGHT 2011-2017 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Online only
Online only
Online only
Online only

New for Version 8.0 (Release 2011a)
Revised for Version 8.1 (Release 2011b)
Revised for Version 8.2 (Release 2012a)
Revised for Version 8.3 (Release 2012b)
Revised for Version 8.4 (Release 2013a)
Revised for Version 8.5 (Release 2013b)
Revised for Version 8.6 (Release 2014a)
Revised for Version 8.7 (Release 2014b)
Revised for Version 8.8 (Release 2015a)
Revised for Version 8.9 (Release 2015b)
Rereleased for Version 8.8.1 (Release
2015aSP1)

Revised for Version 8.10 (Release 2016a)
Revised for Version 8.11 (Release 2016b)
Revised for Version 8.12 (Release 2017a)
Revised for Version 8.13 (Release 2017b)

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

Contents

What is the Target Language Compiler?

1]

Introduction to the Target Language Compiler 1-2
Target Language Compiler Overview 1-2
Overview of the TLC Process 1-3
Overview of the Code Generation Process 1-4

Why Use the Target Language Compiler? 1-7
Customizing Output 1-7
Inlining S-Functions, 1-8
Defining Advanced Custom Storage Classes 1-8

Code Generation Process 1-9
Process Overviewc. i 1-9
How TLC Determines S-Function Inlining Status 1-9
A Look at Inlined and Noninlined S-Function Code 1-10

The Advantages of Inlining S-Functions 1-13
Goals e 1-13
Inlining Process 1-14
Search Algorithm for Locating TLC Files 1-14
Availability for Inlining and Noninlining 1-15

Getting Started

2/

Code Architecture 2-2
Target Language Compiler Process 2-4
model.rtw Structure 2-4
Operating Sequenceuuuiuennenenn.. 2-5

vii

Inlining S-Functions 2-6

Inlining an S-function 2-6
Noninlined S-Function 2-6
Typesof Inlining 2-7
Fully Inlined S-Function Example 2-8
Wrapper Inlined S-Function Example 2-11

Target Language Compiler Tutorials

3

Advice About TLC Tutorials 3-2
Read Record Files with TLC 3-4
Tutorial Overview 3-4
Structure of Record Files 3-4
Interpret Records 3-6
Anatomy of a TLC Seript 3-7
Modify read-guide.tle 3-15
Pass and Use a Parameter 3-19
Review 3-21
Inline S-Functions with TLC 3-23
timesN Tutorial Overview 3-23
Noninlined Code Generation 3-23
Why Use TLC to Inline S-Functions? 3-25
Create an Inlined S-Function 3-25
Explore Variable Names and Loop Rolling 3-28
timesN Looping Tutorial Overview 3-28
Getting Started 3-28
Modify the Model 3-29
Change the Loop Rolling Threshold 3-31
More About TLC Loop Rolling 3-32
Debug Your TLC Code 3-35
tledebug Tutorial Overviewou.... 3-35
Getting Started 3-35
Generate and Run Code from the Model 3-37
Start the Debugger and Use Its Commands 3-38
Debug timesN.tle 3-39

viii Contents

Fixthe Bugand Verify 3-40

TLC Code Coverage to Aid Debugging 3-42
tledebug Execute Tutorial Overview 3-42
Getting Started 3-42
Open the Model and Generate Code 3-43

Wrap User Code with TLC 3-45
wrapper Tutorial Overview 3-45
Why Wrap User Code? 3-45
Getting Started 3-48
Generate Code Without a Wrapper 3-49
Generate Code Using a Wrappero.u... 3-50

Code Generation Architecture

4|

Build Process e 4-2
Build Process Overviewc0iiiniinrn... 4-2
Create and Use Target Language File 4-2

Configure TLC 4-6
Set Command-Line Arguments 4-6
Configure for TLC Debugging 4-7

Code Generation Conceptsc..o..... 4-8
OVEIVIEW . o\ttt e e e e et e e e e 4-8
Output Streamsttt 4-8
Variable Types 4-9
Records 4-9
Record Aliases 4-11

TLC Files e 4-13
TLC Program 4-13
Available Target Files 4-14
Summary of Target File Usage 4-15
System Target Files 4-15

Data Handling with TLC 4-17
Matrix Parameters 4-17

ix

Code Generator Matrix Parameters 4-17

model.rtw File and Authoring S-Functions and Data

Objects
S

model.rtw Fileand Scopes 5-2
Scopes in the model.rtw File 5-3
Data Object Information in model.xtw 5-6
Data Object Overviewcoiiiuennnn... 5-6
Object Records for Parameters 5-6
Object Records for Signals 5-8
Access Data Object Informationvia TLC 5-9
Data References in the model.xrtw File 5-11
Data Reference Overview 5-11
Control the Data Reference Threshold 5-11
Expand Data References 5-12
Avoid Data Reference Expansion 5-12
Restart Code Generation 5-12

Exception to Using the Library Functions that Access
model.rtw 5-13
Example Exception to Using the Library Functions 5-13
Caution Against Directly Accessing Record Fields 5-14

Directives and Built-In Functions

6

Target Language Compiler Directives 6-2
SyNtax 6-2
Directives e 6-3
Comments i 6-16
Line Continuation iiieiineen... 6-17
Target Language Value Types 6-18
Target Language Expressions 6-19

X Contents

Formatting 6-26

Conditional Inclusion 6-26
Multiple Inclusion 6-27
Object-Oriented Facility for Generating Target Code 6-32
Output File Control 6-34
Input File Control 6-35
Asserts, Errors, Warnings, and Debug Messages 6-37
Built-In Functionsand Values 6-37
TLC Reserved Constants 6-48
Identifier Definition 6-49
Variable Scopingt 6-52
Target Language Functions 6-61
Command-Line Arguments 6-65
Target Language Compiler Switches 6-65
Filenames and Search Paths 6-68

Debugging TLC Files

[

Using the TLC Debugger 7-2
About the TLC Debugger 7-2
Invoking the Debugger 7-3
TLC Debugger Command Summary 7-3

TLC Coverage 7-8
Using the TLC Coverage Option 7-8
Example logFile 7-8
Analyzingthe Results 7-10

TLC Profiler 7-12
Using the Profiler 7-12
Analyzingthe Report 7-12
Nonexecutable Directives 7-14
Improving Performance 7-14

xi

xii

Contents

Inlining S-Functions

8

Inline S-Functions i,
Inline S-Functions with Block Target Files
Inline MATLAB File S-Functions
Inline Fortran (F-MEX) S-Functions

Inline C MEX S-Functions
Inline S-Function Overview
S-Function Parameters
Sample Code for S-Function

TLC Coding Conventions
OVEIVIEW . ottt e e e e e e
Begin Identifiers with Uppercase Letters
Begin Global Variable Assignments with Uppercase

Letters
Begin Local Variable Assignments with Lowercase Letters . .
Begin Functions Declared in block.tle Files with Fen
Do Not Hard-Code Variables Defined in commonsetup.tlc . . .
Conditional Inclusion in Library Files
Code Defensively

Block Target File Methods
Block Functions Overviewcou.....
BlockInstanceSetup(block, system)
BlockTypeSetup(block, system)
Enable(block, system)
Disable(block, system)
Start(block, system)
InitializeConditions(block, system)
Outputs(block, system)
Update(block, system),
Derivatives(block, system)
Terminate(block, system)

LoopRolling

8-10
8-10
8-11
8-12

8-22
8-22
8-22

8-23
8-24
8-24
8-24
8-26
8-26

8-27
8-27
8-28
8-29
8-30
8-31
8-31
8-32
8-32
8-34
8-34
8-35

TLC Function Library Reference

9

Target Language Compiler Library Functions Overview . .. 9-2

Target Language Compiler Function Conventions 9-3
Common Function Arguments 9-3
Overloading sigldx 9-5

Input Signal Functions 9-7
LibBlockInputPortIndexMode(block, pidx) 9-7
LibBlockInputSignal(portldx, ucv, lev, sigldx) 9-8
LibBlockInputSignalAddr(portldx, ucv, lcv, sigldx) 9-15
LibBlockInputSignalAliasedThruDataTypeName(portldx,

FEIIMY) . . ittt e e e e 9-15
LibBlockInputSignalConnected(portldx) 9-16
LibBlockInputSignalDataTypeld(portldx) 9-16
LibBlockInputSignalDataTypeName(portldx, reim) 9-16
LibBlockInputSignalDimensions(portldx) 9-17
LibBlockInputSignallsComplex(portldx) 9-17
LibBlockInputSignallsFrameData(portldx) 9-17
LibBlockInputSignalLocalSampleTimelndex(portldx) 9-17
LibBlockInputSignalNumDimensions(portldx) 9-18
LibBlockInputSignalOffsetTime(portldx) 9-18
LibBlockInputSignalSampleTime(portldx) 9-18
LibBlockInputSignalSampleTimelndex(portldx) 9-18
LibBlockInputSignalSymbolicDimensions(portldx) 9-18
LibBlockInputSignalSymbolicWidth(portldx) 9-19
LibBlockInputSignalWidth(portldx) 9-19
LibBlockNumInputPorts(block) 9-19

Output Signal Functions 9-20
LibBlockAssignOutputSignal(portldx, ucv, lev, sigldx, rhs) .. 9-20
LibBlockNumOutputPorts(block) 9-21
LibBlockOutputPortIndexMode(block, pidx) 9-21
LibBlockOutputSignal(portldx, ucv, lev, sigldx) 9-22
LibBlockOutputSignalAddr(portldx, ucv, lcv, sigldx) 9-22
LibBlockOutputSignalAliasedThruDataTypeName(portldx,

TEIM) .t vttt et et e e e 9-23
LibBlockOutputSignalBeingMerged(portldx) 9-23
LibBlockOutputSignalConnected(portldx) 9-23
LibBlockOutputSignalDataTypeld(portldx) 9-24
LibBlockOutputSignalDataTypeName(portldx, reim) 9-24

xiii

xiv

Contents

LibBlockOutputSignalDimensions(portldx)
LibBlockOutputSignallsComplex(portldx)
LibBlockOutputSignallsFrameData(portldx)
LibBlockOutputSignalLocalSampleTimeIndex(portldx)
LibBlockOutputSignalNumDimensions(portldx)
LibBlockOutputSignal OffsetTime(portldx)
LibBlockOutputSignalSampleTime(portldx)
LibBlockOutputSignalSymbolicDimensions(portldx)
LibBlockOutputSignalSymbolicWidth(portldx)
LibBlockOutputSignalSampleTimelndex(portldx)
LibBlockOutputSignalWidth(portldx)

Parameter Functions
LibBlockMatrixParameter
LibBlockMatrixParameterAddr
LibBlockMatrixParameterBaseAddr
LibBlockParamSetting
LibBlockParameter
LibBlockParameterAddr
LibBlockParameterBaseAddr
LibBlockParameterDataTypeld
LibBlockParameterDataTypeName
LibBlockParameterDimensions
LibBlockParameterIsComplex
LibBlockParameterSize
LibBlockParameterString
LibBlockParameterValue
LibBlockParameterWidth

Block State and Work Vector Functions
LibBlockAssignDWork(dwork, ucv, lev, sigldx, rhs)
LibBlockContinuousState(ucv, lev,idx)
LibBlockContinuousStateDerivative(ucv, lev, 1dx)
LibBlockContStateDisabled(ucv, lev, idx)
LibBlockDWork(dwork, ucv, lev,idx)
LibBlockDWorkAddr(dwork, ucv, lev,idx)
LibBlockDWorkDataTypeld(dwork)
LibBlockDWorkDataTypeName(dwork, reim)
LibBlockDWorkIsComplex(dwork)
LibBlockDWorkName(dwork)
LibBlockDWorkStorageClass(dwork)
LibBlockDWorkStorageTypeQualifier(dwork)
LibBlockDWorkUsedAsDiscreteState(dwork)
LibBlockDWorkWidth(dwork)

LibBlockDiscreteState(ucv, lev,idx)

LibBlockIWork(definediwork,
LibBlockMode(ucv, lev, idx) .
LibBlockNonSampledZC(ucv,

uev, lev,idx)

lev, NSZCIdx)

LibBlockPWork(definedpwork, ucv, lev,1dx)
LibBlockRWork(definedrwork, ucv, lev,idx)
LibBlockZCSignalValue(ucv, lcv, zesldx, zcElldx)

Block Path and Error Reporting Functions
LibBlockReportError(block, errorstring)
LibBlockReportFatalError(block, errorstring)
LibBlockReportWarning(block, warnstring)

LibGetBlockName(block) . . .
LibGetBlockPath(block)

LibGetFormattedBlockPath(block)

Code Configuration Functions

LibAddSourceFileCustomSection(file, builtInSection,

newSection)

LibAddToCommonIncludes(incFileName)
LibAddToModelSources(newFile)

LibCacheDefine(buffer)
LibCacheExtern(buffer)

LibCacheFunctionPrototype(buffer)

LibCacheTypedefs(buffer) . . .

LibCallModellnitialize()
LibCallModelStep(tid)

LibCallModelTerminate() . . .

LibCallSetEventForThisBaseStep(buffername)
LibClearFileSectionContents(fileldx, attrib)
LibCreateSourceFile(type, creator, name)

LibGetFileRecordName (file)

LibGetMdlPrvHdrBaseName()
LibGetMdlPubHdrBaseName()

LibGetMdlSrcBaseName() . .
LibGetModelDotCFile()
LibGetModelDotHFile()

LibGetModelName()

LibGetNumSourceFiles() . . .
LibGetRTModelErrorStatus()

LibGetSourceFileAttribute(fileldx, attrib)
LibGetSourceFileFromIdx(fileldx)
LibGetSourceFileSection(fileldx, section)

LibGetSourceFileTag(fileldx)

9-38
9-38
9-38
9-39
9-39
9-39
9-40

9-41
9-41
9-41
9-42
9-42
9-42
9-43

9-44

9-45
9-46
9-46
9-47
9-47
9-48
9-48
9-48
9-48
9-49
9-49
9-49
9-49
9-50
9-50
9-51
9-51
9-51
9-51
9-52
9-52
9-52
9-52
9-53
9-53
9-54

XV

xvi

Contents

LibMdIRegCustomCode(buffer, location)
LibMdIStartCustomCode(buffer, location)
LibMdlTerminateCustomCode(buffer, location)

LibSetRTModelErrorStatus(str)
LibSetSourceFileCodeTemplate(opFile, name)

LibSetSourceFileCustomSection(file, attrib, value)
LibSetSourceFileOutputDirectory(opFile, name)

LibSetSourceFileSection(fileH, section, value)

LibSystemDerivativeCustomCode(system, buffer, location) . .
LibSystemDisableCustomCode(system, buffer, location)
LibSystemEnableCustomCode(system, buffer, location)

LibSystemlInitializeCustomCode(system, buffer, location) . . .
LibSystemOutputCustomCode(system, buffer, location)
LibSystemUpdateCustomCode(system, buffer, location)
LibWriteModelData()
LibWriteModellnput(tid, rollThreshold)
LibWriteModellnputs()
LibWriteModelOutput(tid, rollThreshold)
LibWriteModelOutputs()

Sample Time Functions
LibAsynchronousTriggeredTID(tid)
LibAsyncTaskAccessTimelnFen(tid, fenType)
LibBlockSampleTime(block)
LibGetClockTick(tid)
LibGetClockTickDataTypeld(tid)
LibGetClockTickHigh(tid)
LibGetClockTickStepSize(tid)
LibGetElapseTime(system)
LibGetElapseTimeCounter(system)
LibGetElapseTimeCounterDTypeld(system)
LibGetElapseTimeResolution(system)
LibGetGlobalTIDFromLocalSFenTID(sfenTID)
LibGetNumAsyncTasks()
LibGetNumSFcenSampleTimes(block)
LibGetNumSyncPeriodicTasks()
LibGetNumTasks()
LibGetSampleTimePeriodAndOffset(tid, idx)
LibGetSFenTIDType(sfenTID)
LibGetTaskTime(tid),
LibGetTaskTimeFromTID(block)
LibGetTIDOIEQQO)o ot e e
LibIsContinuous(TID),
LibIsDiscrete(TID)

LibIsSFenSampleHit(sfenTID)
LibIsSFenSingleRate(block)
LibIsSFenSpecialSampleHit(sfenSTI, sfenTID)
LibIsSingleRateModel()

LibIsSingleTasking() .

LibIsZOHContinuous(TID)
LibNumAsynchronousSampleTimes()
LibNumDiscreteSampleTimes()
LibNumSynchronousSampleTimes()
LibPortBasedSampleTimeBlockIsTriggered(block)

LibSetVarNextHitTime
LibTriggeredTID(tid) .

Miscellaneous Functions

(block, tNext)

LibBlockExecuteFenCall(block, callldx)
LibBlockExecuteFcnDisable(block, callldx)

LibBlockExecuteFenEn

able(block, callldx)

LibBlockInputSignalAliasedThruDataTypeld(dx)
LibBlockOutputSignalAliasedThruDataTypeld(idx)

LibGenConstVectWithl

nit(data, typeld, varld)

LibGetBlockAttribute(block, attr)
LibGetCallerClockTickCounter(sfcnBlock)
LibGetCallerClockTickCounterHigh(sfenBlock)
LibGetDataTypeComplexNameFromlIdGd)
LibGetDataTypeEnumFromlIdGd)
LibGetDataTypeldAliasedThruToFromIdGd)
LibGetDataTypeldAliasedToFromId@Gd)

LibGetDataTypeldReso

lvesToFromIdGd)

LibGetDataTypeNameFromId@Gd)
LibGetDataTypeSLSizeFromIdGd)
LibGetDataTypeStorageldFromIdGd)
LibGetFenCallBlock(sfenblock,callldx)

LibGetRecordDataType

Id(xec)

LibGetRecordDimensions(rec)couinin.on..
LibGetRecordIsComplex(rec),
LibGetRecordWidth(rec)

LibGetT()
LibIsComplex(arg) . . .
LibIsFirstInitCond() . .

LibIsMajorTimeStep()

LibIsMinorTimeStep()

LibManageAsyncCount
LibMaxIntValue(dtype)
LibMinIntValue(dtype)

er(sfenBlock, callldx)

9-77
9-78
9-78
9-79
9-79
9-79
9-79
9-79
9-79
9-80
9-80
9-80

9-81
9-82
9-82
9-83
9-83
9-83
9-84
9-84
9-84
9-85
9-85
9-85
9-86
9-86
9-86
9-86
9-86
9-87
9-87
9-87
9-87
9-88
9-88
9-88
9-88
9-88
9-89
9-89
9-89
9-90
9-90

xvil

xviii

Contents

LibNeedAsyncCounter(sfenBlock, callldx) 9-90

LibSetAsyncClockTicks(sfenBlock, callldx, bufl, buf2) 9-90
LibSetAsyncCounter(sfenBlock, callldx, buf) 9-91
LibSetAsyncCounterHigh(sfenBlock, callldx, buf) 9-92
LibTIDInSystem(system, fenType) 9-92
Obsolete Functions, 9-93
Advanced Functions 9-95
LibAppendToModelReferenceUserData(data) 9-95
LibBlockInputSignalBufferDstPort(portldx) 9-96
LibBlockInputSignalStorageClass(portldx, sigldx) 9-97
LibBlockInputSignalStorageTypeQualifier(portldx, sigldx) . 9-97
LibBlockOutputSignallsGlobal(portldx) 9-97
LibBlockOutputSignallsInBlockIO(portldx) 9-98
LibBlockOutputSignallsValidLValue(portldx) 9-98
LibBlockOutputSignalStorageClass(portldx) 9-98
LibBlockOutputSignalStorageTypeQualifier(portldx) 9-98
LibBlockSrcSignalBlock(portldx, sigldx) 9-99
LibBlockSrcSignallsDiscrete(portldx, sigldx) 9-100
LibBlockSrcSignallsGlobalAndModifiable(portldx, sigldx) . 9-100
LibBlockSrcSignallsInvariant(portldx, sigldx) 9-100
LibGetModelReferenceUserData(modelName) 9-101
LibGetReferencedModelNames() 9-101
LibIsModelReferenceRTWTarget() 9-101
LibIsModelReferenceSimTarget() 9-101
LibIsModelReferenceTarget() 9-101

TLC Error Handling A-2
Error Reporting A-8
Generating Errors from TLC Files A-8
Using TLC Error Messages to Troubleshoot A-11
%closefile or %selectfile or %flushfile argument must be a valid

openfile A-11
%define no longer supported, use %function instead A-11
%error directive: text A-11
%exit directive: text A-12
%filescope has already been used in thisfile A-12
%trace directive: text A-12

%warning directive: text

A %implements directive must appear within a block template

file and must match the %language and type specified . . .
A %switch statement can only have one %default

A language choice must be made using the %language directive

prior to using GENERATE or GENERATE_TYPE
A non-homogeneous vector was passed to
GENERATE_FORMATTED_VALUE
Ambiguous reference to identifier — must use array index to
refer to one of multiple scopes
An %if statement can only have one %else
Argument to identifier must be a string
Arguments to directive must be records
Arguments to TLC from the MATLAB command line must be
UL S & o it e
Assertionfailed

Assignment to scope identifier is only allowed when using the +

operator to add members,
Attempt to define a function identifier on top of an existing
variable or function,
Attempt todivide by zero
Bad cast - unable to cast this expression totype
Bad directory (dirname) in O: filename
builtin was expecting expression of type type, got one of type
DY P o e e e
Cannot %undef any builtin functions or variables
Cannot convert string your_string to a number
Changing value of identifier from the RTW file
Error opening filename
Error writing to fileerror
Errors occurred — aborting
Expansion directives %<> cannot benested
Expansion directives %<> cannot span multiple lines; use \ at
endofline
Extra arguments to the function-name built-in function were
ignored (Warning),
File name too long (directory =dirname, name =filename) . .
format is not a legal formatvalue

Function argument mismatch; function function_name expects

number arguments
Function reached the end and did not return a value
Function values are not allowed
Identifier identifier multiply defined. Second and succeeding

definitionsignored.

A-12

A-12
A-12

A-13

A-13

A-13
A-14
A-14
A-15

A-15
A-15

A-15

A-15
A-16
A-16
A-16

A-16
A-16
A-16
A-16
A-16
A-17
A-17
A-17

A-17
A-18
A-18
A-18
A-18
A-19
A-19

A-19

xix

XX

Contents

Identifier identifier used on a %foreach statement was already
inscope (Warning)cuuiiiinnnnnenn..
Illegal use of eval (l.e., %<...>)
Indices may not be negative
Indices must be constant integral numbers
Invalidhandle
Invalid identifier range, the leading strings stringl and string2
mustmatch
Invalid identifier range, the lower bound (bound) must be less
than the upper bound (bound)
Invalid type for unary operator
Invalid type type
It is illegal to return a function from a function
Named value identifier already exists within this scope-
identifier; use %assign to change the value
No %case statement(s) seen yet, statement ignored
Only double and character arrays can be converted from
MATLAB to TLC. This can occur if the MATLAB function
does not return a value (see %matlab)
Only one output is allowed from the TLC
Only strings of length 1 can be assigned using the []
notation
Only strings or cells of strings may be used as the argument to
Query and ExecString
Only vectors of the same length as the existing vector value can
be assigned using the [] notation
Output file identifier opened with %openfile was not
closed e
Ranges, identifier ranges, and repeat values cannot be
repeated
String cannot modify the setting for the command line switch '-
switch'
string is not a recognized user defined property of this
handle
SYNtaX €rTOT . . . v vttt e
The %break directive can only appear within a %foreach, %for,
%roll, or %switch statement
The %case and %default directives can only be used within the
%switch statement
The %continue directive can only appear within a %foreach,
%for, or %roll statement
The %foreach statement expects a constant numeric
argument e
The %if statement expects a constant numeric argument . . .

A-19
A-19
A-19
A-20
A-20
A-20
A-20
A-20
A-20
A-20
A-21
A-21
A-21
A-22
A-22
A-22
A-22
A-22
A-22
A-23

A-23
A-23

A-23

A-23

A-23

A-23
A-24

The %implements directive expects a string or string vector as

the list of languages A-24
The %implements directive specifies type as the type where

typewasexpected A-24
The %implements language does not match the language

currently being generated (language) A-24
The %return statement can only appear within the body of a

function A-24
The == and != operators can only be used to compare values of

the sametype A-25
The argument for %openfile must be a valid string A-25
The argument for %with must be a valid scope A-25
The argument for an [] operation must be a repeated scope

symbol, a vector, or amatrix A-25
The argument to %addincludepath must be a valid string . . A-25
The argument to %include must be a valid string A-26
The begin directive must be in the same file as the

corresponding end directive. A-26
The begin directive on this line has no matching end

directiveo A-26
The construct %matlab function_name(...) construct is illegal in

standalonetle A-27
The FEVAL() function can accept only 2-dimensional arrays

from MATLAB, not number dimensions A-27
The FEVAL() function can accept vectors of numbers or strings

only when calling MATLAB A-27
The FEVAL() function requires the name of a function to

call ... A-27
The final argument to %roll must be a valid block scope A-27
The first argument of a ? : operator must be a Boolean

EXPIrESSION .« o v vt e e e A-27
The first argument to GENERATE or GENERATE_TYPE must

beavalidscope A-28
The function name requires at least number arguments A-28
The GENERATE function requires at least 2 arguments . . . A-28
The GENERATE_TYPE function requires at least 3

ALGUIMNENES . . . ottt e e e e A-28
The ISINF(), ISNAN(), ISFINITE(), REAL(), and IMAG()

functions expect a real or complex valued argument A-28
The language being implemented cannot be changed within a

block templatefile A-28
The language being implemented has changed from old-

language to new-language (Warning) A-29

xx1

xxii

Contents

The left-hand side of a . operator must be a valid scope

identifier A-29
The left-hand side of an assignment must be a simple
expression comprised of ., [], and identifiers A-29

The number of columns specified (specified-columns) did not
match the actual number of columns in the rows (actual-

COlUMNS) . ..ot A-29
The number of rows specified (specified-rows) did not match the

actual number of rows seen in the matrix (actual-rows) . . A-30
The operator_name operator only works on Boolean

ArgUIMENES . . ottt e e e e A-30
The operator_name operator only works on integral

ALGUINENES . . . ottt e e A-30
The operator_name operator only works on numeric

ALGUINENES . . . ottt e e A-30
The return value from the RollHeader function must be a

SUEING . ot e A-30
The roll argument to %roll must be a nonempty vector of

NUMDErs OF YANGES v v vttt ettt e e A-30
The second value in a Range must be greater than the first

value A-31
The specified index (index) was out of the range 0 - number-of-

elements -1 A-31
The STRINGOF built-in function expects a vector of numbers

asitsargument A-31
The SYSNAME built-in function expects an input string of the

form XXX/YYY .« oo A-31
The threshold on a %roll statement must be a single

NUMDET A-31

The use of feature is being deprecated and will not be supported
in future versions of TLC. See the TLC manual for

alternatives. e A-32
The WILL_ROLL built in function expects a range vector and

aninteger threshold A-32
There are no more free contexts. Use tle('close', HANDLE) to

freeupacontext A-32
There was no type associated with the given block for

GENERATE A-32

This assignment would overwrite an identifier-value pair from
the RTW file. To avoid this error either qualify the left-hand
side, or choose another identifier. A-32
TLC has leaked number symbols. You may have created a cyclic
record. If this not the case then please report this leak to The
MathWorks. A-33

Unable to find identifier within the scope-identifier scope . . A-33

Unable to open %include file filename A-33
Unable to open block template file filename from GENERATE

or GENERATE_TYPE A-33
Unable to open output file filename A-34
Undefined identifier identifier name A-34
Unknown type type in CAST expression A-34
Unrecognized command line switch passed to string:

switch A-34
Unrecognized directive directive-name seen A-34
Unrecognized type output-type for function A-35
Unterminated multiline comment. A-35
Unterminated string A-35
Usage: tle [options] file A-36
Use of feature incurs a performance hit, please see TLC manual

for possible workarounds. A-36
Value of type type cannot be compared A-36
Values of specified_type type cannot be expanded A-36

Values of type Special, Macro Expansion, Function, File, Full
Identifier, and Index cannot be converted to MATLAB

variables A-36
When appending to a buffer stream, the variable must be a

SUEING . ot A-36
TLC Function Library Error Messages A-37

xx1ii

What is the Target Language Compiler?

* “Introduction to the Target Language Compiler” on page 1-2
+ “Why Use the Target Language Compiler?” on page 1-7
* “Code Generation Process” on page 1-9

* “The Advantages of Inlining S-Functions” on page 1-13

1 Whatis the Target Language Compiler?

Introduction to the Target Language Compiler

1-2

In this section...

“Target Language Compiler Overview” on page 1-2

“Overview of the TLC Process” on page 1-3

“Overview of the Code Generation Process” on page 1-4

Target Language Compiler Overview

Target Language Compiler (TLC) is an integral part of the code generator. It enables you
to customize generated code. Through customization, you can produce platform-specific
code, or you can incorporate your own algorithmic changes for performance, code size, or
compatibility with existing methods that you prefer to maintain.

The TLC includes:

* A set of TLC files corresponding to a subset of the provided Simulink blocks.

+ TLC files for model-wide information that specify header and parameter information.

The TLC files are ASCII files that explicitly control the way code is generated. By editing
a TLC file, you can alter the way code is generated.

The Target Language Compiler provides a complete set of ready-to-use TLC files for
generating ANSI® C or C++ code. You can view the TLC files and make minor — or
extensive — changes to them. This open environment gives you tremendous flexibility
when it comes to customizing the generated code.

For more information, see “C/C++ S-Functions” (Simulink) which explains how to write
wrapped and fully inlined S-functions, with a special emphasis on the md1RTW ()
function.

Note You should not customize TLC files in the folder matlabroot/rtw/c/tlc even
though the capability exists to do so. Such TLC customizations might not be applied
during the code generation process and can lead to unpredictable results.

Introduction to the Target Language Compiler

Overview of the TLC Process

This top-level diagram shows how the Target Language Compiler fits in with the code
generation process.

Simulink
model.slx
Simulink Coder <
Simulink
TLC program: Coder Build
* System target file model. rtw

* Block target files

« Inlined S-function »| Target Language
target files gCompil%L: g

* Target Language

ﬁ)b?gwreiler function model . c
Run-time interface model .mk
support files — Make —

\ 4
model.exe

The Target Language Compiler (TLC) is designed for one purpose — to convert the model
description file model.rtw (or similar files) into target-specific code or text.

The Target Language Compiler transforms a representation of a Simulink block
diagram, called model . rtw, into C or C++ code. The model. rtw file contains a partial
representation of the model describing the execution semantics of the block diagram in a
very high-level language. For more information, see “model.rtw File and Scopes” on page
5-2.

The word target in Target Language Compiler refers not only to the high-level language
to be output, but also to the nature of the real-time system on which the code will be
executed. TLC-generated code is thus able to respect and exploit the capabilities and
limitations of specific processor architectures (the target).

1-3

1 Whatis the Target Language Compiler?

1-4

After reading the model. rtw file, the Target Language Compiler generates its code
based on target files, which specify particular code for each block, and model-wide files,
which specify the overall code style. The TLC works like a text processor, using the
target files and the model . rtw file to generate ANSI C or C++ code.

To create a target-specific application, the code generator requires a template makefile
that specifies a C or C++ compiler and compiler options for the build process. The code
generator transforms the template makefile into a target makefile (modelI .mk) by
performing token expansion specific to a given model. The target makefile is a modified
version of the generic rt main file (or grt main), which you must modify to conform to
the target’s specific requirements, such as interrupt service routines. See “Template
Makefiles and Make Options” and “Customize Template Makefiles” for more information
about template makefiles.

The Target Language Compiler has similarities with HTML, Perl, and MATLAB®. It has
markup syntax similar to HTML, the power and flexibility of Perl and other scripting
languages, and the data handling power of MATLAB (TLC can invoke MATLAB
functions). The code generated by TLC is highly optimized and fully commented, and can
be generated from linear, nonlinear, continuous, discrete, or hybrid Simulink models.
The models can include Simulink blocks that are automatically converted to code, with
the exception of MATLAB function blocks and S-function blocks that invoke MATLAB
files. The Target Language Compiler uses block target files to transform each block in
the model. rtw file and a model-wide target file for global customization of the code.

You can incorporate C MEX S-functions, along with the generated code, into the program
executable. You can also write a target file for your C MEX S-function to inline the S-
function (see “Inline C MEX S-Functions” on page 8-10), thus potentially improving
performance by eliminating function calls to the S-function itself and the memory
overhead of theSimStruct of the S-function. Inlining an S-function incorporates the S-
function block’s code into the generated code for the model. When a TLC target file is not
present for the S-function, its C or C++ code file is invoked via a function call. For more
information, see “S-function Inlining” in “Target Language Compiler”. You can also write
target files for MATLAB language files or Fortran S-functions.

Overview of the Code Generation Process

The following figure shows how the Target Language Compiler works with its target files
and the code generator output to produce code.

Introduction to the Target Language Compiler

Simulink Model (sample.slx)

A 4

Simulink Coder

*.tlc
I sample.rtw
I I [] [}
I [] []
[] []
Target files . .
[] []
» Target Language Compiler
Generated makefile Generated source code files
° ° ® °
° ° ® i
° ° ® o
° ° [] []
° ° [] []
Y ° [] []

in build directory./sample_xxx_rtw/ :

When generating code from a Simulink model, the first step in the automated process is
to generate a model . rtw file. The model. rtw file includes the model-specific
information required for generating code from the Simulink model. model. rtw is passed
to the Target Language Compiler, which uses it in combination with a set of included
system target files and block target files to generate the code.

1-5

1 Whatis the Target Language Compiler?

Only the final executable file is written directly to the current folder. For other files
created during code generation, including the model . rtw file, a build folder is used. This
folder is created in the current folder and is named model target rtw, where target
is the abbreviation for the target environment, e.g., grt for the generic real-time target.

Files placed in the build folder include

The body for the generated C or C++ source code (model.c or model.cpp)
Header files (model.h)

Header file model private.h defining parameters and data structures private to
the generated code

A makefile, model.mk, for building the application
Additional files, described in “Manage Build Process Files”

Why Use the Target Language Compiler?

Why Use the Target Language Compiler?

If you simply need to produce ANSI C or C++ code from Simulink models, you do not
need to know how to prepare files for the Target Language Compiler. If you need to
customize the output, you must run the Target Language Compiler. Use the Target
Language Compiler if you need to

+ Customize the set of options specified by your system target file

* Inline the code for S-Function blocks

* Generate additional or different types of files

The MATLAB Function block and the Embedded Coder® product facilitate code
customization in a variety of ways. You might be able to accomplish what you need with

them, without the need to write TLC files. However, you do need to prepare TLC files if
you intend to inline S-functions.

See the following sections.

In this section...

“Customizing Output” on page 1-7
“Inlining S-Functions” on page 1-8

“Defining Advanced Custom Storage Classes” on page 1-8

Customizing Output

To produce customized output using the Target Language Compiler, it helps if you
understand how blocks perform their functions, what data types are being manipulated,
the structure of the model. rtw file, and how to modify target files to produce the desired
output. Directives and Built-In Functions topics on “Target Language Compiler”,
describe the target language directives and their associated constructs. You will use the
Target Language Compiler directives and constructs to modify existing target files or
create new ones, depending on your needs. See “TLC Files” on page 4-13 for more
information about target files.

Note You should not customize TLC files in the folder matlabroot/rtw/c/tlc even
though the capability exists to do so. Such TLC customizations might not be applied
during the code generation process and can lead to unpredictable results.

1-7

1 Whatis the Target Language Compiler?

Inlining S-Functions

The Target Language Compiler provides a great deal of freedom for altering, optimizing,
and enhancing the generated code. One of the most important TLC features is that it lets
you inline S-functions that you write to add your own algorithms, device drivers, and
custom blocks to a Simulink model.

To create an S-function, you write code following a well-defined application program
interface (API). By default, the Target Language Compiler will generate noninlined code
for S-functions that invokes them using this same API. This generalized interface incurs
a fair amount of overhead due to the presence of a large data structure called the
SimStruct for each instance of each S-Function block in your model. In addition, extra
run-time overhead is involved whenever methods (functions) within your S-function are
called. You can eliminate this overhead by using the Target Language Compiler to inline
the S-function, by creating a TLC file named sfunction name.tlc that generates
source code for the S-function as if it were a built-in block. Inlining an S-function
improves the efficiency of the generated code and reduces memory usage.

Defining Advanced Custom Storage Classes

Certain data layouts, such as nested structures, cannot be generated using the standard
Unstructured and FlatStructure custom storage class types. You can define an
advanced custom storage class if you want to generate other types of data. Creating
advanced CSCs requires understanding TLC programming and using a special advanced
mode of the Custom Storage Class Designer. For more information, see “Define Advanced
Custom Storage Classes Types” (Embedded Coder). Note that this support requires an
Embedded Coder license.

Code Generation Process

Code Generation Process

In this section...

“Process Overview” on page 1-9
“How TLC Determines S-Function Inlining Status” on page 1-9
“A Look at Inlined and Noninlined S-Function Code” on page 1-10

Process Overview

The code generator invokes the Target Language Compiler after a model is compiled into
a partial representation of the model (model . rtw) suitable for code generation. To
generate code, the Target Language Compiler uses its library of functions to transform
two classes of target files:

+ System target files
* Block target files

System target files are used to specify the overall structure of the generated code,
tailoring for specific target environments. Block target files are used to implement the
functionality of Simulink blocks, including user-defined S-function blocks.

You can create block target files for C MEX, Fortran, and MATLAB language S-functions
to fully inline block functionality into the body of the generated code. C MEX S-functions
can be noninlined, wrapper-inlined, or fully inlined. Fortran S-functions must be
wrapper-inlined or fully inlined.

How TLC Determines S-Function Inlining Status

Whenever the Target Language Compiler encounters an entry for an S-function block in
the model . rtw file, it must decide whether to generate a call to the S-function or to
inline it.

Because they cannot use SimStructs, Fortran and MATLAB language S-functions must

be inlined. This inlining can either be in the form of a full block target file or a one-line
block target file that refers to a substitute C MEX S-function source file.

The Target Language Compiler selects a C MEX S-function for inlining if an explicit
md1RTW () function exists in the S-function code or if a target file for the current target

1-9

1 Whatis the Target Language Compiler?

1-10

language for the current block is in the TLC file search path. If a C MEX S-function has
an explicit md1RTW () function, there must be a corresponding target file or an error
condition results.

The target file for an S-function must have the same root name as the S-function and
must have the extension . t1lc. For example, the target file for a C MEX S-function
named sfix bitop has the filename sfix bitop.tlc.

A Look at Inlined and Noninlined S-Function Code

This example focuses on a C MEX S-function named sfix bitop. The code generation
options are set to allow reuse of signal memory for signal lines that were not set as
tunable signals.

bitwise
Uint1BFE0) s +, | OR
'AIOF Sutl
Sonstant Bitwise
Logizal Cpemtor
f\ aUto
¥)
Sine Wanve Diats Type

Conversian

The code generated for the bit-wise operator block reuses a temporary variable that is set
up for the output of the sum block to save memory. This results in one very efficient line
of code, as seen here.

/* Bitwise Logic Block: <Root>/Bitwise Logical Operator */
/* [input] OR 'FOOF' *x/
rtb temp2 |= OxFOOF;

Initialization or setup code is not required for this inlined block.

If this block were not inlined, the source code for the S-function itself with its various
options would be added to the generated code base, memory would be allocated in the
generated code for the block’s SimStruct data, and calls to the S-function methods
would be generated to initialize, run, and terminate the S-function code. To execute the
mdlOutputs function of the S-function, code would be generated like this:

/* Level2 S-Function Block: <Root>/Bitwise Logical Operator (sfix bitop) */
{

Code Generation Process

SimStruct *rts = ssGetSFunction(rtS, 0);
sfcnOutputs (rts, tid);

The entire md1Outputs function is called and runs just as it does during simulation.
That’s not everything, though. There is also registration, initialization, and termination
code for the noninlined S-function. The initialization and termination calls are similar to
the fragment above. Then, the registration code for an S-function with just one inport
and one outport is 72 lines of C code generated as part of file model reg.h.

/*Level2 S-Function Block: <Root>/Bitwise Logical Operator (sfix bitop) */
{
extern void untitled sf(SimStruct *rts);
SimStruct *rts = ssGetSFunction(rtS, 0);

/* timing info */

static time T sfcnPeriod([1];
static time T sfcnOffset[1];
static int T sfcnTsMap[l];

{

int T i;

for(i = 0; 1 < 1; i++) {
sfcnPeriod[i] = sfcnOffset[i] = 0.0;

}
}
ssSetSampleTimePtr (rts, &sfcnPeriod[0]);
ssSetOffsetTimePtr (rts, &sfcnOffset[0]);
ssSetSampleTimeTaskIDPtr (rts, sfcnTsMap);
ssSetMdlInfoPtr(rts, ssGetMdlInfoPtr(rtS));

/* inputs */
{
static struct ssPortInputs inputPortInfo[l];

_ssSetNumInputPorts(rts, 1);
ssSetPortInfoForInputs (rts, &inputPortInfo[0]);

/* port 0 */
{

static real T const *sfcnUPtrs([1l];
sfcnUPtrs[0] = &rtU.Inl;
ssSetInputPortSignalPtrs(rts, 0, (InputPtrsType)&sfcnUPtrs([0]);
_ssSetInputPortNumDimensions (rts, 0, 1);
ssSetInputPortWidth(rts, 0, 1);

}

1-11

1 Whatis the Target Language Compiler?

This continues until S-function sizes and methods are declared, allocated, and initialized.
The amount of registration code generated is essentially proportional to the number and
size of the input ports and output ports.

A noninlined S-function will typically have a significant impact on the size of the
generated code, whereas an inlined S-function can be close to the handwritten size and
performance of the generated code.

1-12

The Advantages of Inlining S-Functions

The Advantages of Inlining S-Functions

In this section...

“Goals” on page 1-13

“Inlining Process” on page 1-14

“Search Algorithm for Locating TLC Files” on page 1-14
“Availability for Inlining and Noninlining” on page 1-15

Goals

The goals of generated code usually include compactness and speed. On the other hand,
S-functions are run-time-loadable extension modules for adding block-level functionality
to Simulink. As such, the S-function interface is optimized for flexibility in configuring
and using blocks in a simulation environment with capability to allow run-time changes
to a block’s operation via parameters. These changes typically take the form of algorithm
selection and numerical constants for the block algorithms.

While switching algorithms is a desirable feature in the design phase of a system, when
the time comes to generate code, this type of flexibility is often dropped in favor of
optimal calculation speed and code size. The Target Language Compiler was designed to
allow the generation of code that is compact and fast by selectively generating only the
code you need for one instance of a block’s parameter set.

When To Avoid Inlining
You might decide not to inline C MEX S-functions that have

* Few or no numerical parameters

* One algorithm that is already fixed in capability. For example, it has no optional
modes or alternate algorithms.

* Support for only one data type
+ A significant or large code size in the md10Outputs () function
* Multiple instances of this block in your models

Whenever you encounter this situation, the effort of inlining the block might not improve
execution speed and could actually increase the size of the generated code. The tradeoff is

1-13

1 Whatis the Target Language Compiler?

1-14

in the size of the block’s body code generated for each instance versus the size of the child
SimStruct created for each instance of a noninlined S-function in the generated code.

Alternatively, you can use a hybrid inlining method known as a C MEX wrapped S-
function, where the block target file simply generates a call to a custom code function
that the S-function itself also calls. This approach might be the optimal solution for code
generation in the case of a large piece of existing code. See S-Function Inlining on
“Target Language Compiler” for the procedure and an example of a wrapped S-function.

Inlining Process

The strategy for improving code from blocks centers on determining what part of a
block’s operations are active and used in the generated code and what parts can be
predetermined or left out.

In practice, this means the TLC code in the block target file will select an algorithm that
is a subset of the algorithms contained in the S-function itself and then selectively hard-
code numerical parameters that are not to be changed at run time. This reduces code
memory size and results in code that is often much faster than its S-function counterpart
when mode selection is a significant part of S-function processing. Additionally, function-
call overhead is eliminated for inlined S-functions, as the code is generated directly in the
body of the code unless there is an explicit call to a library function in the generated code.

The algorithm selections and parameters for each block are output in the initial phase of
the code generation process from the registered S-function parameter set or the

md1RTW () function (if present), which results in entries in the model’s . rtw file for that
block at code generation time. A file written in the target language for the block is then
called to read the entries in the model . rtw file and compute the generated code for this
instance of the block. This TLC code is contained in the block target file.

One special case for inlined S-functions is for the case of I/0 blocks and drivers such as
A/D converters or communications ports. For simulation, the I/O driver is typically coded
in the S-function as a pure source, a pass-through, or a pure sink. In the generated code,
however, an actual interface to the I/O device must be made, typically through direct
coding with the common in (), out () functions, inlined assembly code, or a specific
set of I/O library calls unique to the device and target environment.

Search Algorithm for Locating TLC Files

The Target Language Compiler uses the following search order to locate TLC files:

The Advantages of Inlining S-Functions

1 Current folder.

2 Locations specified by $addincludepath directives. The compiler evaluates
multiple $addincludepath directives from the bottom up.

3 Locations specified by -I options. The compiler evaluates multiple - I options from
right to left.

For inlined S-function TLC files, the build process supports the following locations:

* The folder where the S-function executable (MEX or MATLAB) file is located.
* S-function folder subfolder . /t1c_c (for C or C++ language targets).

* The current folder when the build process is initiated.

Note Note: Placing the inlined S-function TLC file elsewhere is not supported, even if
the location is in the TLC include path.

The first target file encountered with the required name that implements the specified
language is used in processing the S-function model . rtw file entry.

Note The compiler does not search the MATLAB path, and will not find a file that is
available only on that path. The compiler searches only the locations described above.

Availability for Inlining and Noninlining

S-functions can be written in MATLAB language, Fortran, C, and C++. TLC inlining of
S-functions is available as indicated in this table.
Inline TLC Support by S-Function Type

S-Function Type Noninlining Supported Inlining Supported
MATLAB language No Yes
Fortran MEX No Yes
C Yes Yes
C++ Yes Yes

Getting Started

* “Code Architecture” on page 2-2
* “Target Language Compiler Process” on page 2-4

* “Inlining S-Functions” on page 2-6

2 Getting Started

Code Architecture

Before investigating the specific code generation pieces of the Target Language Compiler
(TLC), consider how Target Language Compiler generates code for a simple model. From
the next figure, you see that blocks place code into Md1 routines. This shows
MdlOutputs.

A 1>
v o

Sine Wawe Gain

static void simple output (int T tid)
{

/* Sin Block: '<Root>/Sine Wave' */

simple B.SineWave d = simple P.SineWave Amp *
sin(simple P.SineWave Freq * simple M->Timing.t[0] +
simple P.SineWave Phase) + simple P.SineWave Bias;

/* Gain: '<Root>/Gain' */
simple B.Gain d = simple B.SineWave d * simple P.Gain Gain;

/* Outport: '<Root>/Outl' */
simple Y.Outl = simple B.Gain d;
}

Blocks have inputs, outputs, parameters, states, plus other general properties. For
example, block inputs and outputs are generally written to a block I/O structure
(generated with identifiers of the type model B), where model is the model name). Block
inputs can also come from the external input structure (model U) or the state structure
when connected to a state port of an integrator (model X), or ground (rtGround) if
unconnected or grounded. Block outputs can also go to the external output structure,
(model Y). The following diagram shows the general block data mappings.

Code Architecture

Fxtetrnal Block I/O External
nputs | _IStruct, Outputs
Struct, t T lmodel B[S PStruct,
model U| : | i |model Y
by A
R < H
---------- | B0k [0
pommssmsmmsnnns 4 M
:]
: AP E : __ Work
: : s " Structs,
. v : rtRWork,
i | States |i|Parameter L‘Eéwg?t’
*==1 Struct, "I Struct, rtDWork .
model_ X| |model_P o ’

This discussion should give you a general sense of what the block object looks like. Now,
you can look at specific pieces of the code generation process that are specific to the
Target Language Compiler.

2-3

2 Getting Started

Target Language Compiler Process

To write TLC code for your S-function, you need to understand the Target Language
Compiler process for code generation. As previously described, the Simulink software
generates a model. rtw file that contains a partial representation of the execution
semantics of the block diagram. The model. rtw file is an ASCII file that contains a data
structure in the form of a nested set of TLC records. The records comprise property
name/property value pairs. The Target Language Compiler reads the model. rtw file and
converts i1t into an internal representation.

Next, the Target Language Compiler runs (interprets) the TLC files, starting first with
the system target file, for example, grt.t1lc. This is the entry point to the system TLC
and block files, that is, other TLC files included in or generated from the TLC file passed
to Target Language Compiler on its command line (grt.tlc). As the TLC code in the
system and block target files is run, it uses, appends to, and modifies the existing
property name/property value pairs and records initially loaded from the model . rtw file.

The following sections provide more information.

In this section...

“model.rtw Structure” on page 2-4

“Operating Sequence” on page 2-5

model.rtw Structure

The structure of the model . rtw file mirrors the block diagram’s structure:

* For each nonvirtual system in the model, there is a corresponding system record in
the model. rtw file.

* For each nonvirtual block within a nonvirtual system, there is a block record in the
model. rtw file in the corresponding system.

The basic structure of model.rtwis

CompiledModel {
System {
Block {
DataInputPort {

Target Language Compiler Process

}
DataOutputPort{

}

ParamSettings {

}

Parameter ({

}

Operating Sequence

For each occurrence of a given block in the model, a corresponding block record exists in
the model. rtw file. The system target file TLC code loops through block records and
calls the functions in the corresponding block target file for that block type. For inlined S-
functions, it calls the inlining TLC file.

There is a method for getting block-specific information (internal block information, as
opposed to inputs, outputs, parameters, etc.) into the block record in the model . rtw file
for a block by using the md1RTW function in the C MEX function of the block.

Among other things, the md1RTW function allows you to write out parameter settings
(ParamSettings), that is, unique information pertaining to this block. For parameter
settings in the block TLC file, direct accesses to these fields are made from the block TLC
code and can be used to alter the generated code as desired.

2-5

2 Getting Started

Inlining S-Functions

2-6

In this section...

“Inlining an S-function” on page 2-6
“Noninlined S-Function” on page 2-6

“Types of Inlining” on page 2-7

“Fully Inlined S-Function Example” on page 2-8

“Wrapper Inlined S-Function Example” on page 2-11

Inlining an S-function

To inline an S-function means to provide a TLC file for an S-Function block that will
replace the C, C++, Fortran, or MATLAB language version of the block that was used
during simulation.

Noninlined S-Function

If an inlining TLC file is not provided, most targets support the block by recompiling the
C MEX S-function for the block. As discussed earlier, there is overhead in memory usage
and speed when using a C/C++ coded S-function and a limited subset of mx* API calls
supported within the code generator context. If you want the most efficient generated
code, you must inline S-functions by writing a TLC file for them.

When the simulation needs to execute one of the functions for an S-function block, it calls
the MEX-file for that function. When the code generator executes a noninlined S-
function, it does so in a similar manner, as this diagram illustrates.

Inlining S-Functions

model .s1lx

sfecn F——

sfen.c v
md1Outputs()

{
}*y = my_alg(u);

x

[}

E J

S my_alg.c v

Y—

@ real T my alg(real T u)
return(2.0*u);

model.c

Md1Outputs()

{
model B.y=sfcnOutputs(rtS,tid)

J A

Call through a function pointer
to access static mdlOutputs.

Types of Inlining

It is helpful to define two categories of inlining:

Fully inlined S-functions

2-7

2 Getting Started

2-8

* Wrapper inlined S-functions

While both inline the S-function and remove the overhead of a noninlined S-function, the
two approaches are different. The first example below, using timestwo.tlc, is
considered a fully inlined TLC file, where the full implementation of the block is
contained in the TLC file for the block.

The second example uses a wrapper TLC file. Instead of generating the algorithmic code
in place, this example calls a C function that contains the body of code. There are several
potential benefits for using the wrapper TLC file:

+ It provides a way for the C MEX S-function and the generated code to share the C
code. You do not need to write the code twice.

* The called C function is an optimized routine.

+ Several of the blocks might exist in the model, and it is more efficient in terms of code
size to have them call a function, as opposed to each creating identical algorithmic
code.

+ It provides a way to incorporate legacy C code seamlessly into generated code.

Fully Inlined S-Function Example

Inlining an S-function provides a mechanism to directly embed code for an S-function
block into the generated code for a model. Instead of calling into a separate source file via
function pointers and maintaining a separate data structure (SimStruct) for it, the code
appears “inlined” as the next figure shows.

Inlining S-Functions

sfcn.tlc
%sfunction(block,system) Output
%<y>=2.0*<u>;

%Sendfunction 4

»

Your TLC code specifies
the algorithm.

model.c v

Md1Outputs()

{
model B.y=2.0*model B.u;

} A

TLC lets you customize
the generated code by
embedding my alg.

The S-function timestwo.c provides a simple example of a fully inlined S-function. This
block multiplies its input by 2 and outputs it. The C MEX version of the block is in the
file matlabroot/toolbox/simulink/simdemos/simfeatures/src/timestwo.c,
and the inlining TLC file for the block is matlabroot/toolbox/simulink/simdemos/

simfeatures/tlc c/timestwo.tlc.

timestwo.tlc

$implements "timestwo" "C"

e

% Function: Outputs

e
oe

$function Outputs(block, system)
/* %<Type> Block: %<Name> */
/* Multiply input by two */
%$assign rollvars = ["U", "Y"]
%$roll idx = RollRegions, lcv = RollThreshold, block,
%$<LibBlockOutputSignal (0, "", lcv, idx)> = \
%<LibBlockInputSignal (0, "", lcv, idx)> * 2.0;

Output

"Roller", rollVars

2-9

matlab:edit(fullfile(matlabroot,'/toolbox/simulink/simdemos/simfeatures/src/timestwo.c'))
matlab:edit(fullfile(matlabroot,'/toolbox/simulink/simdemos/simfeatures/tlc_c/timestwo.tlc'))

2 Getting Started

2-10

%endroll
$endfunction

TLC Block Analysis

The $implements directive is required by TLC block files and is used by the Target
Language Compiler to verify the block type and language supported by the block. The
%function directive starts a function declaration and shows the name of the function,
Outputs, and the arguments passed to it, block and system. These are the relevant
records from the model . rtw file for this instance of the block.

The last piece of the prototype is Output. This means that any line that is not a TLC
directive is output by the function to the current file that is selected in TLC. So,
nondirective lines in the Outputs function become generated code for the block.

The most complicated piece of this TLC block example is the $rol1 directive. TLC uses
this directive to provide automatic generation of for loops, depending on input/output
widths and whether the inputs are contiguous in memory. This example uses the typical
form of accessing outputs and inputs from within the body of the roll, using
LibBlockOutputSignal and LibBlockInputSignal to access the outputs and inputs
and perform the multiplication and assignment. Note that this TLC file supports any
valid signal width.

The only function used to implement this block is Outputs. For more complicated blocks,
other functions are declared as well. You can find examples of more complicated inlining
TLC files in the folders matlabroot/toolbox/simulink/simdemos/simfeatures/
tlc_c (open) and matlabroot/toolbox/simulink/blocks/tlc_c (open), and by
looking at the code for built-in blocks in the folder matlabroot/rtw/c/tlc/blocks

(open).

The timestwo Model

This simple model uses the timestwo S-function and shows the Md1Outputs function
from the generated model. c file, which contains the inlined S-function code.

timestwo 1)
timestwo _output T4

1

L

Constant

S-Function

matlab:cd(fullfile(matlabroot,'/toolbox/simulink/simdemos/simfeatures/tlc_c'))
matlab:cd(fullfile(matlabroot,'/toolbox/simulink/blocks/tlc_c'))
matlab:cd(fullfile(matlabroot,'/rtw/c/tlc/blocks'))

Inlining S-Functions

Model Outputs Code

/* Model output function */
static void timestwo ex output(int T tid)

{

/* S-Function Block: <Root>/S-Function */

/* Multiply input by two */

timestwo ex B.timestwo output = timestwo ex P.Constant Value
* 2.0;

/* Outport: '<Root>/Outl' */
timestwo ex Y.Outl = timestwo ex B.timestwo output;

Wrapper Inlined S-Function Example

The following diagram illustrates inlining an S-function as a wrapper. The algorithm is
directly called from the generated model code, removing the S-function overhead but
maintaining the user function.

sfcn.tlc

sfunction(block,system) Output
s<y>=my_alg(%<u>);
sendfunction 4

Gour TLC code specifies
Qow to call my _alg directly.

model.c

Md1Outputs()
{

}

model_ﬁ. y=my alg(model B.u);

TLC lets you customize the
generated code to produce
adirectcalltomy alg.

2-11

2 Getting Started

2-12

This is the inlining TLC file for a wrapper version of the timestwo block.

$implements "timestwo" "C"

e

% Function: BlockTypeSetup

e
oe

e

function BlockTypeSetup (block, system) void
%% Add function prototype to model's header file
%$<LibCacheFunctionPrototype...
("extern void mytimestwo (real T* in,real T* out,int T els);")>
%% Add file that contains "myfile" to list of files to be compiled
%$<LibAddToModelSources ("myfile") >
%endfunction

e

% Function: Outputs

e
oe

$function Outputs(block, system) Output
/* %<Type> Block: %<Name> */
%$assign outPtr = LibBlockOutputSignalAddr (0o, "", "", 0)
%assign inPtr = LibBlockInputSignalAddr (0, "", "",0)
%$assign numEls = LibBlockOutputSignalWidth (0)
/* Multiply input by two */
mytimestwo (%$<inPtr>, $<outPtr>, $<numEls>) ;

%endfunction
Analysis

The function BlockTypeSetup is called once for each type of block in a model; it doesn't
produce output directly like the Outputs function. Use BlockTypeSetup to include a
function prototype in the model.h file and to tell the build process to compile an
additional file, myfile.c.

Instead of performing the multiplication directly, the Outputs function now calls the
function mytimestwo. All instances of this block in the model call the same function to
perform the multiplication. The resulting model function, Md1Outputs, then becomes

static void timestwo ex output(int T tid)
{
/* S-Function Block: <Root>/S-Function */
/* Multiply input by two */
mytimestwo (&model B.Constant Value, &model B.S Function,1);

/* Outport Block: <Root>/Outl */
model Y.Outl = model B.S Function;
}

Target Language Compiler Tutorials

+ “Advice About TLC Tutorials” on page 3-2

* “Read Record Files with TLC” on page 3-4

* “Inline S-Functions with TLC” on page 3-23

+ “Explore Variable Names and Loop Rolling” on page 3-28
+ “Debug Your TLC Code” on page 3-35

+ “TLC Code Coverage to Aid Debugging” on page 3-42

* “Wrap User Code with TLC” on page 3-45

3 Target Language Compiler Tutorials

Advice About TLC Tutorials

The fastest and easiest way to understand the Target Language Compiler (TLC) is to run
it, paying attention to how TLC scripts transform compiled Simulink models (model.rtw
files) into source code. The tutorials highlight the principal reasons for and techniques of
using TLC. The tutorials provide a number of TLC exercises, each one organized as a
major section.

The example models, S-functions, and TLC files for the exercises are located in the folder
matlabroot/toolbox/rtw/rtwdemos/tlctutorial (open). In this chapter, this
folder is referred to as t1ctutorial. Each example is located in a separate subfolder
within t1ctutorial. Within that subfolder, you can find solutions to the problem in a
solutions subfolder.

Note Before you begin the tutorial, copy the entire t1ctutorial folder to a local
working folder. The files are together, and if you make mistakes or want fresh examples
to try again, you can recopy files from the original t1ctutorial folder.

Each tutorial exercise is limited in scope, requiring just a small amount of
experimentation. The tutorial explains details about TLC that will help customize and
optimize code for code generation projects.

Note You should not customize TLC files in the folder matlabroot/rtw/c/tlc even
though the capability exists to do so. Such TLC customizations might not be applied
during the code generation process and can lead to unpredictable results.

The tutorials progress in difficulty from basic to more advanced. To get the most out of
them, you should be familiar with

+ Working in the MATLAB environment

* Building Simulink models

+ Using the code generator to produce code for target systems

* High-level language concepts (for example, C or Fortran programming)

If you encounter terms in the tutorials that you do not understand, it may be helpful to
read “Code Generation Concepts” on page 4-8 to acquaint yourself with the basic goals

matlab:cd(fullfile(matlabroot,'/toolbox/rtw/rtwdemos/tlctutorial'))

Advice About TLC Tutorials

and methods of TLC programming. Similarly, if you see TLC keywords, built-in
functions, or directives that you would like to know more about, see the corresponding
topics on “Target Language Compiler”.

The examples used in the tutorial are:

Example Description

guide Tlustrative record file

timesN An example C file S-function for multiplying an input by N
tledebug An example using TLC Debugger

wrapper Example TLC file for S-function wrapsfcn.c

3-3

3 Target Language Compiler Tutorials

Read Record Files with TLC

3-4

In this section...

“Tutorial Overview” on page 3-4
“Structure of Record Files” on page 3-4
“Interpret Records” on page 3-6
“Anatomy of a TLC Script” on page 3-7
“Modify read-guide.tlc” on page 3-15

“Pass and Use a Parameter” on page 3-19

“Review” on page 3-21

Tutorial Overview

Objective: Understand the structure of record files and learn how to parse them with
TLC directives.

Folder: matlabroot/toolbox/rtw/rtwdemos/tlctutorial/guide (open)

In this tutorial you interpret a simple file of structured records with a series of TLC
scripts. You will learn how records are structured, and how TLC %$assign and %$<> token
expansion directives are used to process them. In addition, the tutorial illustrates loops
using %$foreach, and scoping using %with.

The tutorial includes these steps, which you should follow sequentially:

Structure of Record Files — Some background and a simple example
Interpret Records — Presenting contents of the record file

Anatomy of a TLC Script — Deconstructing the presentation
Modify read-guide. tlc — Experiment with TLC

Pass and Use a Parameter— Pass parameters from the command line to TLC files

D A WN =

Review

Structure of Record Files

The code generator compiles models into a structured form called a record file, referred to
as model.rtw. Such compiled model files are similar in syntax and organization to

matlab:cd(fullfile(matlabroot,'/toolbox/rtw/rtwdemos/tlctutorial/guide'))

Read Record Files with TLC

source model files, in that they contain a series of hierarchically nested records of the
form

recordName {itemName itemValue}

Item names are alphabetic. Item values can be strings or numbers. Numeric values can
be scalars, vectors, or matrices. Curly braces set off the contents of each record, which
may contain one or more items, delimited by space, tab, or return characters.

In a model. rtw file, the top-level (first) record’s name is CompiledModel. Each block is
represented by a subrecord within it, identified by the block’s name. TLC can parse well-
formed record files, as this exercise illustrates.

The following listing is a valid record file that TLC can parse, although not one for which
it can generate code. Comments are indicated by a pound sign (#):

#
File: guide.rtw Illustrative record file, which can't be used by Simulink
Note: string values MUST be in quotes
Top { # Outermost Record, called Top
Date "21-Aug-2008" # Name/Value pair named Top.Date
Employee { # Nested record within the Top record
FirstName "Arthur" # Alpha field Top.Employee.FirstName
LastName "Dent" # Alpha field Top.Employee.LastName
Overhead 1.78 # Numeric field Top.Employee.Overhead
PayRate 11.50 # Numeric field Top.Employee.PayRate
GrossRate 0.0 # Numeric Field Top.Employee.GrossRate
} # End of Employee record
NumProject 3 # Indicates length of following list
Project { # First list item, called Top.Project[0]
Name "Tea" # Alpha field Name, Top.Project[0].Name
Difficulty 3 # Numeric field Top.Project[0].Difficulty
} # End of first list item
Project { # Second list item, called Top.Project[1l]
Name "Gillian" # Alpha field Name, Top.Project[l].Name
Difficulty 8 # Numeric field Top.Project[l].Difficulty
} # End of second list item
Project { # Third list item, called Top.Project([2]
Name "Zaphod" # Alpha field Name, Top.Project[2].Name
Difficulty 10 # Numeric field Top.Project[2].Difficulty
} # End of third list item
} # End of Top record and of file

As long as programmers know the names of records and fields, and their expected
contents, they can compose TLC statements to read, parse, and manipulate record file
data.

3-5

3 Target Language Compiler Tutorials

Interpret Records

Here is the output from a TLC program script that reads guide. rtw, interprets its

records, manipulates field data, and formats descriptions, which are directed to the
MATLAB Command Window:

Using TLC you can:

* Directly access a field's value, e.g.
%<Top.Date> -- evaluates to:
"21-Aug-2008"

*

Assign contents of a field to a variable, e.g.

%assign worker = Top.Employee.FirstName"
worker expands to Top.Employee.FirstName = "Arthur"

*

Concatenate string values, e.g.
"%assign worker = worker + " " + Top.Employee.LastName"
worker expands to worker + " " + Top.Employee.LastName = "Arthur Dent"

*

Perform arithmetic operations, e.g.
no

*assign wageCost = Top.Employee.PayRate * Top.Employee.Overhead"
wageCost expands to Top.Employee.PayRate * Top.Employee.Overhead <- 11.5 * 1.78 = 20.47

* Put variables into a field, e.g.
Top.Employee.GrossRate starts at 0.0
"%assign Top.Employee.GrossRate = wageCost"
Top.Employee.GrossRate expands to wageCost = 20.47

*

Index lists of values, e.g.

"%assign projects = Top.Project[0].Name + ", " + Top.Project[l].Name..."
"+ ", " + Top.Project[2].Name"

projects expands to Top.Project[0].Name + ", " + Top.Project[l].Name

+ ", " + Top.Project[2].Name = Tea, Gillian, Zaphod

*

Traverse and manipulate list data via loops, e.g.

- At top of Loop, Project = Tea; Difficulty = 3

- Bottom of Loop, i = 0; diffSum = 3.0

- At top of Loop, Project = Gillian; Difficulty = 8

- Bottom of Loop, i = 1; diffSum = 11.0

- At top of Loop, Project = Zaphod; Difficulty = 10

- Bottom of Loop, i = 2; diffSum = 21.0

Average Project Difficulty expands to diffSum / Top.NumProject = 21.0 / 3 = 7.0

This output from guide.rtw was produced by invoking TLC from the MATLAB
Command Window, executing a script called read-guide. t1lc. Do this yourself now, by
following these steps:

1 In MATLAB, change folder (cd) to your copy of t lctutorial/gquide within your
working folder.

2 To produce the output just listed, process guide. rtw with the TLC script read-
guide.tlc by typing the following command:

tlc -v -r guide.rtw read-guide.tlc

3-6

Read Record Files with TLC

Note command usage:

* The -r switch (for read) identifies the input data file, in this case guide . rtw.
* The TLC script handling the data file is specified by the last token typed.

* The -v switch (for verbose) directs output to the command window, unless the TLC
file handles this itself.

Anatomy of a TLC Script

You now dissect the script you just ran. Each “paragraph” of output from guide.tlc is
discussed in sequence in the following brief sections:

+ “Coding Conventions” on page 3-7 — Before you begin

+ “File Header” on page 3-8 — Header info and a formatting directive

+ “Token Expansion” on page 3-8— Evaluating field and variable identifiers

* “General Assignment” on page 3-9 — Using the $assign directive

+ “String Processing Plus” on page 3-10 — Methods of assembling strings

+ “Arithmetic Operations” on page 3-12 — Computations on fields and variables

+ “Modify Records” on page 3-12 — Changing, copying, appending to records

* “Index Lists” on page 3-13 — Referencing list elements with subscripts

* “Loop Over Lists” on page 3-14 — Details on loop construction and behavior

Coding Conventions

These are some basic TLC syntax and coding conventions:

%% Comment TLC comment, which is not output

/* comment */ Comment, to be output

Skeyword TLC directive (keyword), start with “%”

$<expr> TLC token operator

. (period) Scoping operator, for example, Top.Lev2.Lev3
... (at end-of-line) Statement continuation (line break is not output)
\ (at end-of-line) Statement continuation (line break is output)
localvarIdentifier Local variables start in lowercase

3 Target Language Compiler Tutorials

3-8

GlobalvarIdentifier Global variables start in uppercase
RecordIdentifier Record identifiers start in uppercase
EXISTS () TLC built-in functions are named in uppercase

Note: TLC identifiers are case-sensitive.
For further information, see “TLC Coding Conventions” on page 8-22.
File Header

The file read-guide. t1c begins with:

e
oe

File: read-guide.tlc (This line is a TLC Comment, and will not print)

e
oe

e
oe

To execute this file, type: tlc -v -r guide.rtw read-guide.tlc
Set format for displaying real values (default is "EXPONENTIAL")
%$realformat "CONCISE"

e
oe

* Lines 1 through 4 — Text on a line following the characters %% is treated as a
comment (ignored, not interpreted or output).

+ Line 5 — As explained in the text of the fourth line, is the TLC directive (keyword)
$realformat, which controls how subsequent floating-point numbers are formatted
when displayed in output. Here we want to minimize the digits displayed.

Token Expansion

The first section of output is produced by the script lines:

Using TLC you can:
* Directly access a field's value, e.g.
%assign td = "%" + "<Top.Date>"

<td> -- evaluates to:

"$<Top.Date>"

+ Lines 1 and 2 — (and lines that contain no TLC directives or tokens) are simply
echoed to the output stream, including leading and trailing spaces.

+ Line 3 — Creates a variable named td and assigns the string value $<Top.Date> to
it. The %$assign directive creates new and modifies existing variables. Its general
syntax is:

%assign ::variable = expression

Read Record Files with TLC

The optional double colon prefix specifies that the variable being assigned to is a
global variable. In its absence, TLC creates or modifies a local variable in the current
scope.

* Line 4 — Displays
%<Top.Date> -- evaluates to:

The preceding line enables TLC to print $<Top.Date> without expanding it. It
constructs the string by pasting together two literals.

%assign td = "$" + "<Top.Date>"

As discussed in “String Processing Plus” on page 3-10, the plus operator
concatenates strings as and adds numbers, vectors, matrices, and records.

* Line 5 — Evaluates (expands) the record Top.Date. More precisely, it evaluates the
field Date which exists in scope Top. The syntax $<expr> causes expression expr
(which can be a record, a variable, or a function) to be evaluated. This operation is
sometimes referred to as an eval.

Note You cannot nest the $<expr> operator (that is, $<foo%<bar>> 1s not allowed).

Note When you use the $<expr> operator within quotation marks, for example,
"%$<Top.Date>", TLC expands the expression and then encloses the result in quotation
marks. However, placing $assign within quotation marks, for example, "%assign foo
= 3", simply echoes the statement enclosed in quotation marks to the output stream. No
assignment results (the value of foo remains unchanged or undefined).

General Assignment

The second section of output is produced by the script lines:

* Assign contents of a field to a variable, e.g.
%assign worker = Top.Employee.FirstName

"%$assign worker = Top.Employee.FirstName"

worker expands to Top.Employee.FirstName = $<worker>

* Line 1 — Echoed to output.

* Line 2 — An assignment of field FirstName in the Top.Employee record scope to a
new local variable called worker.

3 Target Language Compiler Tutorials

* Line 3 — Repeats the previous statement, producing output by enclosing it in
quotation marks.

+ Line 4 — Explains the following assignment and illustrates the token expansion. The
token $<worker> expands to Arthur.

String Processing Plus

The next section of the script illustrates string concatenation, one of the uses of the “+”
operator:

* Concatenate string values, e.g.

%assign worker = worker + " " + Top.Employee.LastName
"$assign worker = worker + " " + Top.Employee.LastName"
worker expands to worker + " " + Top.Employee.LastName = "$<worker>"

* Line 1 — Echoed to output.
* Line 2 — Performs the concatenation.
* Line 3 — Echoes line 2 to the output.

* Line 4 — Describes the operation, in which a variable is concatenated to a field
separated by a space character. An alternative way to do this, without using the +
operator, 1s

%assign worker = "%<Top.Employee.FirstName> $<Top.Employee.LastName>"

The alternative method uses evals of fields and is equally efficient.

The + operator, which is associative, also works for numeric types, vectors, matrices, and
records:

* Numeric Types — Add two expressions together; both operands must be numeric. For
example:

* Numeric Type example, e.g.
Top.Employee.PayRate = %$<Top.Employee.PayRate>
Top.Employee.Overhead = $%$<Top.Employee.Overhead>

%assign td = Top.Employee.PayRate + Top.Employee.GrossRate
td = Top.Employee.PayRate + Top.Employee.Overhead
td evaluates to %<td>

Output:

* Numeric Type example, e.g.
Top.Employee.PayRate = 11.5

3-10

Read Record Files with TLC

Top.Employee.Overhead = 1.78
td = Top.Employee.PayRate + Top.Employee.Overhead
td evaluates to 13.28

Vectors — If the first argument is a vector and the second is a scalar value, TLC
appends the scalar value to the vector. For example:

* Vector example, e.g.
%assign vl = [0, 1, 2, 3]
vl is %<vl>
%assign tpld = Top.Project[l].Difficulty
Top.Project[l].Difficulty is %$<tpld>
%$assign v2 = vl + tpld
v2 = vl + Top.Project[l].Difficulty
v2 evaluates to: %$<v2>

Output:

* Vector example, e.g.
vl is [0, 1, 2, 3]
Top.Project[1l].Difficulty is 8
v2 = vl + Top.Project[l].Difficulty
v2 evaluates to: [0, 1, 2, 3, 8]

Matrices — If the first argument is a matrix and the second is a vector of the same
column-width as the matrix, TLC appends the vector as another row to the matrix.
For example:

* Matrices example, e.g.
%$assign mxl = [[4, 5, 6, 7]; [8, 9, 10, 111]
mxl is %$<mxl>
vl is %<vl>
%assign mx = mxl + vl
mx = mxl + vl
mx evaluates to %$<mx>

Output:

* Matrices example, e.g.
mxl is [[4, 5, 6, 7]1; [8, 9, 10, 1171 1
vl is [0, 1, 2, 3]
mx = mx1l + vl
mx evaluates to [[4, 5, 6, 71; [8, 9, 10, 111; [0, 1, 2, 31 1]

Records — If the first argument is a record, TLC adds the second argument as a
parameter identifier (with its current value). For example:

3-11

3 Target Language Compiler Tutorials

3-12

* Record example, e.g.

%assign StartDate = "August 28, 2008"
StartDate is %<StartDate>

%assign tsd = Top + StartDate
Top + StartDate
Top.StartDate evaluates to %$<Top.StartDate>

Output:

* Record example, e.g.
StartDate is August 28, 2008
Top + StartDate
Top.StartDate evaluates to August 28, 2008

Arithmetic Operations

TLC provides a full complement of arithmetic operators for numeric data. In the next
portion of our TLC script, two numeric fields are multiplied:
* Perform arithmetic operations, e.g.
%assign wageCost = Top.Employee.PayRate * Top.Employee.Overhead
"%assign wageCost = Top.Employee.PayRate * Top.Employee.Overhead"

wageCost expands to Top.Employee.PayRate * Top.Employee.Overhead ...
<- %<Top.Employee.PayRate> * %<Top.Employee.Overhead> = %<wageCost>

* Line 1 — Echoed to output.

+ Line 2 — %assign statement that computes the value, which TLC stores in local
variable wageCost.

* Line 3 — Echoes the operation in line 2.

* Lines 4 and 5 — Compose a single statement. The ellipsis (typed as three consecutive
periods, for example, . ..) signals that a statement is continued on the following line,
but if the statement has output, TLC does not insert a line break. To continue a
statement and insert a line break, replace the ellipsis with a backslash (\).

Modify Records

Once read into memory, you can modify and manipulate records just like variables you
create by assignment. The next segment of read-guide. t1lc replaces the value of record
field Top.Employee.GrossRate:

* Put variables into a field, e.g.
%assign Top.Employee.GrossRate = wageCost
"$assign Top.Employee.GrossRate = wageCost"
Top.Employee.GrossRate expands to wageCost = %$<Top.Employee.GrossRate>

Read Record Files with TLC

Such changes to records are nonpersistent (because record files are inputs to TLC; other
file types, such as C source code, are outputs), but can be useful.

You can use several TLC directives besides $assign to modify records:
%createrecord Creates new top-level records, and might also specify
subrecords within them, including name/value pairs.

%addtorecord Adds fields to an existing record. The new fields can be
name/value pairs or aliases to existing records.

$mergerecord Combines one or more records. The first record contains
itself plus copies of the other records' contents specified by
the command, in sequence.

%copyrecord Creates a new record as $createrecord does, except the
components of the record come from the existing record you
specify.

$undef var Removes (deletes) var (a variable or a record) from scope. If

var is a field in a record, TLC removes the field from the
record. If var is a record array (list), TLC removes the first
element of the array; the remaining elements remain
accessible. You can remove only records you create with
%createrecordor scopyrecord.

See “Target Language Compiler Directives” on page 6-2 for details on these directives.
Index Lists

Record files can contain lists, or sequences of records having the same identifier. Our
example contains a list of three records identified as Project within the Top scope. List
references are indexed, numbered from 0, in the order in which they appear in the record
file. Here is TLC code that compiles data from the Name field of the Project list:

* Index lists of values, e.g.

%assign projects = Top.Project[0].Name + ", " + Top.Project[l].Name...
+ ", " + Top.Project[2].Name
"%assign projects = Top.Project[0].Name + ", " + Top.Project[l].Name..."
"+ ", " + Top.Project[2].Name"
projects expands to Top.Project[0].Name + ", " + Top.Project[l].Name
+ ", " + Top.Project[2].Name = %$<projects>

The Scope.Record[n] .Field syntax is similar to that used in C to reference elements
in an array of structures.

3-13

3 Target Language Compiler Tutorials

3-14

While explicit indexing, such as the above, is perfectly acceptable, it is often preferable to
use a loop construct when traversing entire lists, as shown in “Loop Over Lists” on page
3-14.

Loop Over Lists

By convention, the section of a record file that a list occupies is preceded by a record that
indicates how many list elements are present. In model. rtw files, such parameters are
declared as NumIdent, where Ident is the identifier used for records in the list that
follows. In guide.rtw, the Project list looks like this:

Difficulty 10 Numeric field Top.Project[2].Difficulty

End of third list item

NumProject 3 # Indicates length of following list
Project { # First list item, called Top.Project[0]
Name "Tea" # Alpha field Name, Top.Project[0].Name
Difficulty 3 # Numeric field Top.Project[0].Difficulty
} # End of first list item
Project { # Second list item, called Top.Project[1l]
Name "Gillian" # Alpha field Name, Top.Project[l].Name
Difficulty 8 # Numeric field Top.Project[l].Difficulty
} # End of second list item
Project { # Third list item, called Top.Project[2]
Name "Zaphod" # Alpha field Name, Top.Project[2].Name
#
#

}

Thus, the value of NumProject describes how many Project records occur.

Note model . rtw files might also contain records that start with Num but are not list-size
parameters. TLC does not require that list size parameters start with Num. Therefore you
need to be cautious when interpreting NumIdent record identifiers. The built-in TLC
function SIZE () can determine the number of records in a specified scope, hence the
length of a list.

The last segment of read-guide.tlc uses a $foreach loop, controlled by the
NumProject parameter, to iterate the Project list and manipulate its values.

* Traverse and manipulate list data via loops, e.g.
%$assign diffSum = 0.0
%$foreach i = Top.NumProject
- At top of Loop, Project = %$<Top.Project[i].Name>; Difficulty =...
%<Top.Project[i].Difficulty>
%assign diffSum = diffSum + Top.Project[i].Difficulty
- Bottom of Loop, 1 = %<i>; diffSum = %$<diffSum>
%endforeach
%assign avgDiff = diffSum / Top.NumProject

Read Record Files with TLC

Average Project Difficulty expands to diffSum / Top.NumProject = %$<diffSum> ...
%<Top.NumProject> = %$<avgDiff>

As you may recall, the TLC output looks like this:

* Traverse and manipulate list data via loops, e.g.
- At top of Loop, Project = Tea; Difficulty = 3
- Bottom of Loop, i = 0; diffSum = 3.0
- At top of Loop, Project = Gillian; Difficulty = 8
- Bottom of Loop, i = 1; diffSum = 11.0
- At top of Loop, Project = Zaphod; Difficulty = 10
- Bottom of Loop, i = 2; diffSum = 21.0
Average Project Difficulty expands to diffSum / Top.NumProjects = 21.0 / 3 = 7.0

After initializing the summation variable di ffSum, a $foreach loop is entered, with
variable i declared as the loop counter, iterating up to NumProject. The scope of the

loop is all statements encountered until the corresponding $endforeach is reached
($foreach loops may be nested).

Note Loop iterations implicitly start at zero and range to one less than the index that
specifies the upper bound. The loop index is local to the loop body.

Modify read-guide.tic

Now that you have studied read-guide.tlc, it is time to modify it. This exercise
introduces two important TLC facilities, file control and scoping control. You implement
both within the read-guide. tlc script.

File Control Basics

TLC scripts almost invariably produce output in the form of streams of characters.
Output is normally directed to one or more buffers and files, collectively called streams.
So far, you have directed output from read-guide.tlc to the MATLAB Command
Window because you included the -v switch on the command line. Prove this by omitting
-v when you run read-guide.tlc. Type

tlc -r guide.rtw read-guide.tlc

Nothing appears to happen. In fact, the script was executed, but output was directed to a
null device (sometimes called the “bit bucket”).

There is one active output file, even if it is null. To specify, open, and close files, use the
following TLC directives:

3-15

3 Target Language Compiler Tutorials

3-16

sopenfile streamid ="filename" , "mode"
%closefile streamid
%selectfile streamid

If you do not give a filename, subsequent output flows to the memory buffer named by
streamid. If you do not specify a mode, TLC opens the file for writing and deletes any
existing content (subject to system-level file protection mechanisms). Valid mode
identifiers are a (append) and w (write, the default). Enclose these characters in quotes.

The %openfile directive creates a file/buffer (in w mode), or opens an existing one (in a
mode). Note the required equals sign for file specification. Multiple streams can be open
for writing, but only one can be active at one time. To switch output streams, use the
$selectfile directive. You do not need to close files until you are done with them.

The default output stream, which you can respecify with the stream ID NULL FILE, is
null. Another built-in stream is STDOUT. When activated using $selectfile, STDOUT
directs output to the MATLAB Command Window.

Note The streams NULL FILE and STDOUT are always open. Specifying them with
%openfile generates errors. Use $selectfile to activate them.

The directive $closefile closes the current output file or buffer. Until an $openfile
or a $selectfile directive is encountered, output goes to the previously opened stream
(or, if none exists, to null). Use $selectfile to designate an open stream for reading or
writing. In practice, many TLC scripts write pieces of output data to separate buffers,
which are then selected in a sequence and their contents spooled to one or more files.

Implement Output File Control

In your tlctutorial/guide folder, find the file read-guide-file-src.tlc. The
supplied version of this file contains comments and three lines of text added. Edit this
file to implement output file control, as follows:

Open read-guide-file-src.tlc in your text editor.
Save the file as read-guide-file.tlc.

Note five comment lines that begin with $% ->.

Under each of these comments, insert a TLC directive as indicated.

Read Record Files with TLC

4 Save the edited file as read-guide-file.tlc.

5 Execute read-guide-file.tlc with the following command:

tlc -r guide.rtw read-guide-file.tlc

If you succeeded, TLC creates the file guidetext . txt which contains the expected
output, and the MATLAB Command Window displays

**% Qutput being directed to file: guidetext.txt
*** We're almost done
**%* Processing completed.

If you did not see these messages, or if a text file was not produced, review the material
and try again. If problems persist, inspect read-guide-file.tlc in the guide/
solutions subfolder to see how you should specify file control.

Scope Basics

“Structure of Record Files” on page 3-4 explains the hierarchical organization of records.
Each record exists within a scope defined by the records in which it is nested. The
example file, guide. rtw, contains the following scopes:

Top
Top.Employee
Top.Project[0]
Top.Project[1]
Top.Project[2]

To refer to a field or a record, specify its scoping, even if no other context that contains
the identifier exists. For example, in guide. rtw, the field Fi rstName exists only in the
scope Top.Employee. You must refer to it as Top.Employee.FirstName whenever
accessing it.

When models present scopes that are deeply nested, this can lead to extremely long
identifiers that are tedious and error prone to type. For example:

CompiledModel.BlockOutputs.BlockOutput.ReusedBlockOutput

This identifier has a scope that is long and has similar item names that you could easily
enter incorrectly.

The $with/%endwith directive eases the burden of coding TLC scripts and clarifies
their flow of control. The syntax is

3-17

3 Target Language Compiler Tutorials

3-18

$with RecordName
[TLC statements]
%endwith

Every %with is eventually followed by an $endwith, and these pairs might be nested
(but not overlapping). If RecordName is below the top level, you need not include the top-
level scope in its description. For example, to make the current scope of guide.rtw
Top.Employee, you can specify

$with Employee
[TLC statements]
%endwith

Naturally, $with Top.Employee is also valid syntax. Once bracketed by $with/
%endwith, record identifiers in TLC statements do not require you to specify their outer
scope. However, note the following conditions :

* You can access records outside of the current $with scope, but you must qualify them
fully (for example, using record name and fields).

* Whenever you make assignments to records inside a $with directive, you must
qualify them fully.

Change Scope Using %with

In the last segment of this exercise, you modify the TLC script by adding a $with/
%endwith directive. You also need to edit record identifier names (but not those of local
variables) to account for the changes of scope resulting from the $with directives.

Open the TLC script read-guide-scope-src.tlc in the text editor.

Save the file as read-guide-scope.tlc.

o

Note comment lines that commence with $% ->.

Under each of these comments, insert a TLC directive or modify statements already
present, as indicated.

Save the edited file as read-guide-scope.tlc.

5 Execute read-guide-scope.tlc with the following command:

tlc -v -r guide.rtw read-guide-scope.tlc

Read Record Files with TLC

The output should be exactly the same as from read-guide. t1c, except possibly for
white space that you might have introduced by indenting sections of code inside $with/
%endwith or by eliminating blank lines.

Fully specifying a scope inside a $with context is not an error, it is simply unnecessary.
However, failing to fully specify its scope when assigning it to a record (for example,
%assign GrossRate = wageCost) is invalid.

If errors result from running the script, review the discussion of scoping above and edit
read-guide-scope.tlc to eliminate them. As a last resort, inspect read-guide-
scope.tlcinthe /solutions subfolder to see how you should have handled scoping in
this exercise.

For additional information, see “Scopes in the model.rtw File” on page 5-3 and
“Variable Scoping” on page 6-52.

Pass and Use a Parameter

You can use the TLC commands and built-in functions to pass parameters from the
command line to the TLC file being executed. The most general command switch is -a,
which assigns arbitrary variables. For example:

tlc -r input.rtw -avar=1 -afoo="abc" vars.tlc

The result of passing this pair of strings via -a is the same as declaring and initializing
local variables in the file being executed (here, vars.tlc). For example:

%assign var 1
%assign foo = "abc"

You do not need to declare such variables in the TLC file, and they are available for use
when set with -a. However, errors result if the code assigns undeclared variables that

you do not specify with the —a switch when invoking the file. Also note that (in contrast
to the -r switch) a space should not separate -a from the parameter you are declaring.

In the final section of this tutorial, you use the built-in function

GET COMMAND SWITCH () to print the name of the record file being used in the TLC
script, and provide a parameter to control whether or not the code is suppressed. By
default the code is executed, but is suppressed if the command line contains —alist=0:

3-19

3 Target Language Compiler Tutorials

1 Open the TLC script read-guide-param-src.tlc in your text editor.

2 Save the file as read-guide-param.tlc.

3 To enable your program to access the input filename from the command line, do the
following:

a

Below the line $selectfile STDOUT, add the line:

%assign inputfile = GET COMMAND SWITCH ("r")

The $assign directive declares and sets variables. In this instance, it holds a
string filename identifier. GET COMMAND SWITCH () returns whatever string
argument follows a specified TLC command switch. You must use UPPERCASE
for built-in function names.

Change the line “*** WORKING WITH RECORDFILE” to read as follows:

***% WORKING WITH RECORDFILE S%<inputfile>

4 To control whether or not a section of TLC code is executed, do the following:

a

(v

Below the line “sassign inputfile = GET_COMMAND SWITCH ("r")”, add:
%if (!EXISTS (list))

%assign list =1
%endif

The program checks whether a list parameter has been declared, via the
intrinsic (built-in) function EXTISTS () . If no list variable exists, the program
assigns one. This defines 1ist and by default its value is TRUE.

Enclose lines of code within an %if block.

$if (list)
* Assign contents of a field to a variable, e.g.
%assign worker = FirstName
"%assign worker = FirstName"
worker expands to FirstName = $<worker>
%endif

Now the code to assign worker is sent to the output only when 1ist is TRUE.

Save read-guide-param.tlc.

5 Execute read-guide-param.tlc and examine the output, using the command

tlc -r guide.rtw read-guide-param.tlc

3-20

Read Record Files with TLC

This yields

*** WORKING WITH RECORDFILE [guide.rtw]

* Assign contents of a field to a variable, e.g.
"$assign worker = FirstName"
worker expands to FirstName = Arthur

* % *END

6 Executeread-guide-param.tlc with the command:

tlc -r guide.rtw -alist=0 read-guide-param.tlc

With the —alist=0 switch, the output displays only the information outside of the
if statement.

*** WORKING WITH RECORDFILE [guide.rtw]

* % *END

Review

The preceding exercises examined the structure of record files, and expanded on how to
use TLC directives. The following TLC directives are commonly used in TLC scripts (see
“Target Language Compiler Directives” on page 6-2 for detailed descriptions):

%addincludepath Enable TLC to find included files.

$addtorecord Add fields to existing record. New fields can be name/
value pairs or aliases to existing records.

%assign Create or modify variables.

$copyrecord Create new record and, if applicable, specify subrecords

within them, including name/value pairs. The
components of the record come from the existing record

specified.
%createrecord Create new top-level records and, if applicable, specify
subrecords within them, including name/value pairs.
$foreach/%endforeach Iterate loop variable from O to upper limit.
%if/%endif Control whether code is executed, as in C.
%include Insert one file into another, as in C.

3-21

3 Target Language Compiler Tutorials

$mergerecord Combine one or more records. The first record contains
itself plus copies of the other records contents specified
by the command, in sequence.

%$selectfile Direct outputs to a stream or file.

sundef var Remove (delete) var (a variable or a record) from
scope. If var is a field in a record, TLC removes the
field from the record. If var is a record array (list),
TLC removes the first element of the array; the
remaining elements remain accessible. Only records
created via $createrecord or $copyrecord can be
removed.

$with/%endwith Add scope to simplify referencing blocks.

In “Pass and Use a Parameter” on page 3-19, you used TLC built in functions. See
“Target Language Compiler Directives” on page 6-2 for more information.

3-22

Inline S-Functions with TLC

Inline S-Functions with TLC

In this section...

“timesN Tutorial Overview” on page 3-23
“Noninlined Code Generation” on page 3-23
“Why Use TLC to Inline S-Functions?” on page 3-25

“Create an Inlined S-Function” on page 3-25

timesN Tutorial Overview

Objective: To understand how TLC works with an S-function.

Folder: matlabroot/toolbox/rtw/rtwdemos/tlctutorial/timesN (open)
In this tutorial, you generate versions of C code for existing S-function timesN.
The tutorial includes these steps:

1 Noninlined Code Generation — Via SimStructs and generic API
2 Why Use TLC to Inline S-Functions? — Benefits of inlining

3 Create an Inlined S-Function — Via custom TLC code

A later tutorial provides information and practice with “wrapping” S-functions.

Noninlined Code Generation

The tutorial folder t1ctutorial/timesN in your working folder contains Simulink S-
function timesN.c.

In this exercise, you generate noninlined code from the model sfun xN.

1 Find the file rename timesN.tlcin tlctutorial/timesN. Rename this file to
timesN. tlc. This allows you to generate code.

2 Inthe MATLAB Command Window, create a MEX-file for the S-function:

mex timesN.c

This avoids picking up the version shipped with Simulink.

3-23

matlab:cd(fullfile(matlabroot,'/toolbox/rtw/rtwdemos/tlctutorial/timesN'))

3 Target Language Compiler Tutorials

3

10
11

Open the model sfun xN, which uses the timesN S-function. The block diagram
looks like this.

ﬁu o timesN timesiM_output r@
Sin S-Function Out
|
Scope

Open the Configuration Parameters dialog box and select the Solver pane.
Set Stop time to 10.0.
Set the Solver Options.

* Type to Fixed-step
*+ Solver to Discrete (no continuous states)
+ Fixed-step size to 0.01

Select the Optimization > Signals and Parameters pane, and make sure that
Default parameter behavior is set to Tunable.

Select the Code Generation > Comments pane, and notice that Include
comments is checked by default.

Select the Code Generation pane and check Generate code only.

Click Apply.
Press Ctrl+B to generate C code for the model.

Open the resulting file sfun_xN _grt rtw/sfun_xN.c and view the
sfun_xN_output portion, shown below.

/* Model output function */
static void sfun_xN_output (int_ T tid)

{

/* Sin: '<Root>/Sin' */
sfun_xN B.Sin = sin(sfun_xN M->Timing.t[0] * sfun_xN P.Sin Freq +

sfun_xN P.Sin_ Phase) * sfun_xN P.Sin Amp +
sfun_xN_P.Sin Bias;

/* S-Function Block: <Root>/S-Function */
/* Multiply input by 3.0 */
sfun_xN B.timesN output = sfun xN B.Sin * 3.0;

/* Outport: '<Root>/Out' */

3-24

Inline S-Functions with TLC

sfun_xN_Y.Out = sfun_xN B.timesN_output;
UNUSED_PARAMETER (tid) ;
}

Comments appear in the code because, in the Code Generation > Comments pane of
the Configuration Parameters dialog box, Include comments is selected by default.

Why Use TLC to Inline S-Functions?

The code generator includes a generic API that you can use to invoke user-written
algorithms and drivers. The API includes a variety of callback functions — for
initialization, output, derivatives, termination, and so on — as well as data structures.
Once coded, these are instantiated in memory and invoked during execution via indirect
function calls. Each invocation involves stack frames and other overhead that adds to
execution time.

In a real-time environment, especially when many solution steps are involved, generic
API calls can be unacceptably slow. The code generator can speed up S-functions in
standalone applications that it generates by embedding user-written algorithms within
auto-generated functions, rather than indirectly calling S-functions via the generic API.
This form of optimization is called inlining. TLC inlines S-functions, resulting in faster,
optimized code.

You should understand that TLC is not a substitute for writing C code S-functions. To
invoke custom blocks within Simulink, you still have to write S-functions in C (or as
MATLAB files), since simulations do not make use of TLC files. You can, however,
prepare TLC files that inline specified S-functions to make your target code much more
efficient.

Create an Inlined S-Function

TLC creates an inlined S-function whenever it detects a . t1c file with the same name as
an S-function. Assuming the . t1c file has the expected form, it directs construction of
code that functionally duplicates the external S-function without incurring API overhead.
See how this process works by completing the following steps:

1 If you have not done so already, find the file rename timesN.tlcin
tlctutorial/timesN. Rename this file to timesN.t1lc, so you can use it to
generate code. The executable portion of the file is

$implements "timesN" "C"

3-25

3 Target Language Compiler Tutorials

oe
o

Function: Outputs

oe

function Outputs(block, system) Output

%assign gain =SFcnParamSettings.myGain
/* %<Type> Block: %<Name> */

oe

* oe

~ o°

Multiply input by %$<gain> */

%$assign rollvars = ["U", "Y"]
$roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars
$<LibBlockOutputSignal (0, "", lcv, idx)> = \
$<LibBlockInputSignal (0, "", lcv, idx)> * %<gain>;
%endroll
$endfunction

2 Create the inline version of the S-function.

a Onthe Optimization > Signals and Parameters pane of the Configuration
Parameters dialog box, set Default parameter behavior to ITnlined, and
click Apply.

Change the diagram’s label from model: sfun xNtomodel: sfun xN ilp.
Save the model as sfun x2 ilp.

d Press Ctrl+B. Source files are created in a new subfolder called
sfun xN ilp grt rtw.

e Inspect the code in generated file sfun xN ilp.c:

/* Model output function */
static void sfun xN ilp output (int T tid)
{
/* Sin: '<Root>/Sin' */
sfun xN ilp B.Sin = sin(sfun xN ilp M->Timing.t[0]);

/* S-Function Block: <Root>/S-Function */
/* Multiply input by 3.0 */
sfun xN ilp B.timesN output = sfun xN ilp B.Sin * 3.0;

/* Outport: '<Root>/Out' */
sfun xN ilp Y.Out = sfun xN ilp B.timesN output;
UNUSED PARAMETER (tid) ;

Note When the code generator produces code and builds executables, it creates
or uses a specific subfolder (called the build folder) to hold source, object, and
make files. By default, the build folder is named model grt rtw.

3-26

Inline S-Functions with TLC

Notice that setting Default parameter behavior to Inlined did not change
the code. This is because TLC inlines S-functions.

3 Continue the exercise by creating a standalone simulation.
a Inthe Code Generation pane of the Configuration Parameters dialog box,
clear Generate code only and click Apply.

b In the Data Import/Export pane of the Configuration Parameters dialog box,
check Output.

This specification causes the model’s output data to be logged in your MATLAB
workspace.

¢ Press Ctrl+B to generate code, compile, and link the model into an executable,
named sfun xN ilp.exe (or, on UNIX® systems, sfun xN ilp).

d Confirm that the timesN. t1c file produces expected output by running the
standalone executable. To run it, in the MATLAB Command Window, type
!sfun xN ilp
The following response appears:

** starting the model **
** created sfun xN ilp.mat **

e View or plot the contents of the sfun xN ilp.mat file to verify that the
standalone model generated sine output ranging from -3 to +3. In the MATLAB
Command Window, type

load sfun xN ilp.mat
plot (rt yout)

Tip For UNIX platforms, run the executable in the Command Window with the
syntax ! ./executable name. If preferred, run the executable from an OS shell with

the syntax . /executable name. For more information, see “Run External Commands,
Scripts, and Programs” (MATLAB).

3-27

3 Target Language Compiler Tutorials

Explore Variable Names and Loop Rolling

3-28

In this section...

“timesN Looping Tutorial Overview” on page 3-28
“Getting Started” on page 3-28

“Modify the Model” on page 3-29

“Change the Loop Rolling Threshold” on page 3-31
“More About TLC Loop Rolling” on page 3-32

timesN Looping Tutorial Overview

Objective: This example shows how you can influence looping behavior of generated
code.

Folder: matlabroot/toolbox/rtw/rtwdemos/tlctutorial/timesN (open)

Work with the model sfun xNin tlctutorial/timesN. It has one source (a Sine Wave
generator block), a times N gain block, an Out block, and a Scope block.

The tutorial guides you through following steps:

1 Getting Started — Set up the exercise and run the model

2 Modify the Model — Change the input width and see the results

3 Change the Loop Rolling Threshold — Change the threshold and see the results
4 More About TLC Loop Rolling — Parameterize loop behavior

Getting Started

1 Make tlctutorial/timesN your current folder, so that you can use the files
provided.

Note You must use or create a working folder outside of matlabroot for Simulink
models you make. You cannot build models in source folders.

2 Inthe MATLAB Command Window, create a MEX-file for the S-function:

mex timesN.c

matlab:cd(fullfile(matlabroot,'/toolbox/rtw/rtwdemos/tlctutorial/timesN'))

Explore Variable Names and Loop Rolling

3

4

This avoids picking up the version shipped with Simulink.

Note An error might occur if you have not previously run mex -setup.

Open the model file sfun_ xN.

ﬁu o] timesN timesN_output ':@
Sin S-Function Out
T
Scope

View the previously generated code in sfun_xN grt rtw/sfun_ xN.c. Note that no
loops exist in the code. This is because the input and output signals are scalar.

Modify the Model

1
2

Replace the Sine Wave block with a Constant block.

Set the parameter for the Constant block to 1:4, and change the top label, model:
sfun xN, tomodel: sfun vec.

Save the edited model as sfun_vec (in tlctutorial/timesN). The model now
looks like this.

2l timesN timesN_output »(7)
Corstart S-Function Out
A
Scope

Because the Constant block generates a vector of values, this is a vectorized model.
Generate code for the model and view the /*Model output function */ section
of sfun_vec.c in your editor to observe how variables and for loops are handled.
This function appears as follows:

/* Model output function */

static void sfun_vec_output (int T tid)

{

/* S-Function Block: <Root>/S-Function */
/* Multiply input by 3.0 */

3-29

3 Target Language Compiler Tutorials

sfun_vec_ B.timesN output[0] = sfun vec P.Constant Value[0] * 3.0;
sfun_vec_ B.timesN output[l] = sfun vec P.Constant Value[l] * 3.0;
sfun_vec_ B.timesN output[2] = sfun vec P.Constant Value[2] * 3.0;
sfun_vec_ B.timesN output[3] = sfun vec P.Constant Value[3] * 3.0;

/* Outport: '<Root>/Out' */

sfun_vec_Y.Out[0] = sfun vec B.timesN output[0];
sfun_vec_Y.Out[1l] = sfun vec B.timesN output[l];
sfun_vec_Y.Out[2] = sfun vec B.timesN output[2];
sfun_vec_Y.Out[3] = sfun vec B.timesN output[3];

UNUSED_PARAMETER (tid) ;

Notice that there are four instances of the code that generates model outputs,
corresponding to four iterations.

5 Set the parameter for the Constant block to 1:10, and save the model.

6 Generate code for the model and view the /*Model output function */ section
of sfun vec.c in your editor to observe how variables and for loops are handled.
This function appears as follows:

/* Model output function */

static void sfun_vec output (int T tid)

{
/* S-Function Block: <Root>/S-Function */
/* Multiply input by 3.0 */
{

int T i1;
const real T *u0 = &sfun vec P.Constant Value[0];
real T *y0 = sfun vec B.timesN output;
for (i1=0; il < 10; il++) {
y0[il1] = u0[il] * 3.0;
}
}
{
int32 T i;

for (1 = 0; i < 10; i++) {
/* Outport: '<Root>/Out' */
sfun _vec Y.Out[i] = sfun vec B.timesN output[i];
}
}

UNUSED_PARAMETER (tid) ;

Notice that:

* The code that generates model outputs gets “rolled” into a loop. This occurs by default
when the number of iterations exceeds 5.

* Loop index i1l runs from O to 9.

3-30

Explore Variable Names and Loop Rolling

* Pointer *y0 is used and initialized to the output signal array.

Change the Loop Rolling Threshold

The code generator creates iterations or loops depending on the current value of the
Loop unrolling threshold parameter.

The default value of Loop unrolling threshold is 5. To change looping behavior for
blocks in a model:

1 On the Optimization > Signals and Parameters pane of the Configuration
Parameters dialog box, set Loop unrolling threshold to 12 and click 2pply.

The parameter Rol1Threshold is now 12. Loops will be generated only when the
width of signals passing through a block exceeds 12.

Note You cannot modify Rol11Threshold for specific blocks from the Configuration
Parameters dialog box.

2 Press Ctrl+B to regenerate the output.
3 Inspect sfun_vec.c. It will look like this:

/* Model output function */

static void sfun_vec_output (int T tid)

{
/* S-Function Block: <Root>/S-Function */
/* Multiply input by 3.0 */

sfun_vec B.timesN output[0] = sfun vec P.Constant Value[0] * 3.0;
sfun_vec_ B.timesN output[l] = sfun vec P.Constant Value[l] * 3.0;
sfun_vec_ B.timesN output[2] = sfun vec P.Constant Value[2] * 3.0;
sfun_vec_ B.timesN output[3] = sfun vec P.Constant Value[3] * 3.0;
sfun_vec_ B.timesN output[4] = sfun vec P.Constant Value[4] * 3.0;
sfun_vec B.timesN output[5] = sfun vec_ P.Constant Value[5] * 3.0;
sfun_vec_ B.timesN output[6] = sfun vec P.Constant Value[6] * 3.0;
sfun_vec B.timesN output[7] = sfun vec P.Constant Value[7] * 3.0;
sfun_vec_ B.timesN output[8] = sfun vec P.Constant Value[8] * 3.0;
sfun_vec_ B.timesN output[9] = sfun vec P.Constant Value[9] * 3.0;

/* Outport: '<Root>/Out' */
sfun_vec Y.Out[0] = sfun vec B.timesN output
sfun_vec_Y.Out[1l] = sfun vec B.timesN output
sfun_vec_Y.Out[2] = sfun_vec_ B.timesN output
sfun_vec_Y.Out[3] = sfun vec B.timesN output
sfun_vec_Y.Out[4] = sfun vec B.timesN output

[5]

[6]

[7]

sfun_vec_Y.Out = sfun_vec B.timesN_ output
sfun_vec_Y.Out = sfun_vec B.timesN_ output
sfun_vec_Y.Out = sfun_vec B.timesN_ output

3-31

3 Target Language Compiler Tutorials

sfun_vec_Y.Out([8] = sfun vec B.timesN output([8];
sfun_vec_Y.Out[9] = sfun vec B.timesN output[9];
UNUSED_PARAMETER (tid) ;

}

4 To activate loop rolling again, change the Loop unrolling threshold to 10 (or less)
on the Optimization > Signals and Parameters pane.

Loop rolling is an important TLC capability for optimizing generated code. Take some
time to study and explore its implications before generating code for production
requirements.

More About TLC Loop Rolling

The following TLC $rol1l code is the Outputs function of timesN.tlc:

$function Outputs (block, system) Output
/* %$<Type> Block: %<Name> */

2o
]

/* Multiply input by %<gain> */

%$assign rollvars = ["U", "Y"]
%$roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars
%<LibBlockOutputSignal (0, "", lcv, idx)> = \
%<LibBlockInputSignal (0, "", lcv, idx)> * %$<gain>;
%endroll

$endfunction %% Outputs

Arguments for %roll
The lines between $roll and %endroll may be either repeated or looped. The key to
understanding the $rol1l directive is in its arguments:

%roll sigIdx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars

Argument Description

sigIdx Specify the index into a (signal) vector that is used in the
generated code. If the signal is scalar, when analyzing that block
of the model . rtw file, TLC determines that only a single line of
code 1s required. In this case, it sets sigIdx to 0 so as to access
only the first element of a vector, and no loop is constructed.

3-32

Explore Variable Names and Loop Rolling

Argument Description

lcv A control variable generally specified in the $rol1 directive as
lcv = RollThreshold. Rol1Threshold is a global (model-
wide) threshold with the default value of 5. Therefore, whenever a
block contains more than five contiguous and rollable variables,
TLC collapses the lines nested between $rol1 and $endroll into
a loop. If fewer than five contiguous rollable variables exist,
%$roll does not create a loop and instead produces individual
lines of code.

block This tells TLC that it is operating on block objects. TLC code for
S-functions use this argument.

"Roller" This, specified in rtw/c/tlc/roller.tlc, formats the loop.
Normally you pass this as is, but other loop control constructs are
possible for advanced uses (see LibBlockInputSignal in “Input
Signal Functions” on page 9-7).

rollvars Tells TLC what types of items should be rolled: input signals,

output signals, and/or parameters. You do not have to use all of
them. In a previous line, rol1Vars is defined using $assign.

%assign rollVars = ["U", "Y"]

This list tells TLC that it is rolling through input signals (U) and
output signals (Y). In cases where blocks specify an array of
parameters instead of a scalar parameter, rol1lvars is specified
as

%assign rollvVars = ["U", "Y", "P"]
Input Signals, Output Signals, and Parameters

Look at the lines that appear between $roll and $endroll:

%$<LibBlockOutputSignal (0, "", lcv, idx)>

=\
$<LibBlockInputSignal (0, "", lcv, 1idx)> * 2.

0;
The TLC library functions LibBlockInputSignal and LibBlockOutputSignal
expand to produce scalar or vector identifiers that are named and indexed.

LibBlockInputSignal, LibBlockOutputSignal, and a number of related TLC
functions are passed four canonical arguments:

3-33

3 Target Language Compiler Tutorials

3-34

Argument

first argument — 0

second argument — " "

third argument — 1cv

fourth argument — sigTdx

Description

Corresponds to the input port index for a
given block. The first input port has index
0. The second input port has index 1, and
S0 on.

An index variable reserved for advanced
use. For now, specify the second argument
as an empty string. In advanced
applications, you may define your own
variable name to be used as an index with
$roll. In such a case, TLC declares this
variable as an integer in a location in the
generated code.

As described previously, 1cv =
RollThresholdis setin $roll to indicate
that a loop be constructed whenever
RollThreshold (default value of 5) is
exceeded.

Enables TLC to handle special cases. In the
event that the Rol11Threshold is not
exceeded (for example, if the block is only
connected to a scalar input signal) TLC
does not roll it into a loop. Instead, TLC
provides an integer value for the index
variable in a corresponding line of “inline”
code. Whenever the Rol11Threshold is
exceeded, TLC creates a for loop and uses
an index variable to access inputs, outputs
and parameters within the loop.

For details, see “%roll” on page 6-29 in the TLC Directives.

Debug Your TLC Code

Debug Your TLC Code

In this section...

“tledebug Tutorial Overview” on page 3-35

“Getting Started” on page 3-35

“Generate and Run Code from the Model” on page 3-37
“Start the Debugger and Use Its Commands” on page 3-38
“Debug timesN.tl¢” on page 3-39

“Fix the Bug and Verify” on page 3-40

ticdebug Tutorial Overview

Objective: Introduces the TLC debugger. You will learn how to set breakpoints and
familiarize yourself with TLC debugger commands.

Folder: matlabroot/toolbox/rtw/rtwdemos/tlctutorial/tlcdebug (open)

You can cause the TLC debugger to be invoked whenever the build process is invoked. In
this tutorial, you use it to detect a bugin a . t1c file for a model called simple log. The
bug causes the generated code output from the standalone version of the model to differ
from its simulation output. The tutorial guides you through following steps:

1 Getting Started — Run the model and inspect output

2 Generate and Run Code from the Model — Compare compiled results to original
output

3 Start the Debugger and Use Its Commands — Things you can do with the
debugger

4 Debug timesN. tlc — Find out what went wrong
5 Fix the Bug and Verify — Easy ways to fix bugs and verify fixes

Getting Started

1 Copy the files from t1lctutorial/tlcdebug to your current working directory.
2 Inthe MATLAB Command Window, create a MEX-file for the S-function:

mex timesN.c

3-35

matlab:cd(fullfile(matlabroot,'/toolbox/rtw/rtwdemos/tlctutorial/tlcdebug'))

3 Target Language Compiler Tutorials

3-36

This avoids picking up the version shipped with your Simulink software.

Note An error might occur if you have not previously run mex -setup.

3 Open the model simple log. The model looks like this.

T ti
> imesN (1)
aa first_output B
Discrete Puse =
Ceair Gainist

4 In the Data Import/Export pane of the Configuration Parameters dialog box, check
Time and Output. This causes model variables to be logged to the MATLAB
workspace.

5 Run the model by selecting Run from the Simulation menu. Variables tout and
yout appear in your MATLAB workspace.

6 Double-click yout in the Workspace pane of the MATLAB Command Window. The
Variable Editor displays the 6x1 array output from simple log. The display looks
like this:

Eﬂ wouk <6x1 double=

1 Z 3 4 =) £

[TRy O S o I L T
DL O g

Column 1 contains discrete pulse output for six time steps (3s and 0s), collected at
port outl.

Next, you generate a standalone version of simple log. You execute it and compare its
results to the output from Simulink displayed above.

Note For the purpose of this exercise, the TLC file provided, timesN. t1lc, contains a
bug. This version must be in the same folder as the model that uses it.

Debug Your TLC Code

Generate and Run Code from the Model
1 Press Ctrl+B.

The code generator produces, compiles, and links C source code. The MATLAB
Command Window shows the progress of the build, which ends with these messages:

Created executable: simple log.exe
Successful completion of build procedure
for model: simple log

2 Run the standalone model just created by typing
!simple log
This results in the messages

** starting the model **
** created simple log.mat **

3 Inspect results by placing the variables in your workspace. In the Current Folder
pane, double-click simple log.mat, then double-click rt yout (the standalone
version of variable yout) in the Workspace pane.

Compare rt_yout with yout. Do you notice differences? Can you surmise what
caused values in rt _yout to change?

A look at the generated C code that TLC placed in your build folder
(simple log grt_ rtw) helps to identify the problem.

4 Edit simple log.c and look at its Md1Outputs function, which should appear as
shown below:

/* Model output function */
static void simple log output (void)
{
/* DiscretePulseGenerator: '<Root>/Discrete Pulse Generator' */
simple log B.DiscretePulseGenerator = (simple log DW.clockTickCounter < 1.0) &&
(simple_log DW.clockTickCounter >= 0) 2 1.0 : 0.0;
if (simple_log DW.clockTickCounter >= 2.0 - 1.0) {
simple log DW.clockTickCounter = 0;
} else {
simple log DW.clockTickCounter++;
}

/* End of DiscretePulseGenerator: '<Root>/Discrete Pulse Generator' */

/* S-Function (timesN): '<Root>/Gainlst' incorporates:
* Qutport: '<Root>/Outl'

3-37

3 Target Language Compiler Tutorials

3-38

}

*/

/* S-Function Block: <Root>/Gainlst */
/* Multiply input by 3.0 */
simple log Y.Outl = simple log B.DiscretePulseGenerator * 1;

Note the line near the end:

simple log B.first output = simple log B.DiscretePulseGenerator * 1;

How did the incorrect product get assigned to the output when it was supposed to receive
a variable that alternates between 3.0 and 0.0? Use the debugger to find out.

Start the Debugger and Use Its Commands

You use the TLC debugger to monitor the code generation process. As it is not invoked by
default, you need to request the debugger explicitly.

1

Set up the TLC debugging environment and start to build the application:

a

Select the Configuration Parameters > Code Generation pane, and select
the options Retain .rtw file and Start TLC debugger when generating
code. Click OK.

Build the model.

The MATLAB Command Window describes the building process. The build stops
at the timesN. t1c file and displays the command prompt:

TLC-DEBUG>

Type help to list the TLC debugger commands. Here are some things you can do in
the debugger.

View and query various entities in the TLC scope.

TLC-DEBUG> whos CompiledModel
TLC-DEBUG> print CompiledModel.NumSystems
TLC-DEBUG> print TYPE (CompiledModel.NumSystems)

Examine the statements in your current context.

TLC-DEBUG> list
TLC-DEBUG> list 10,40

Move to the next line of code.

Debug Your TLC Code

TLC-DEBUG> next

+ Step into a function.

TLC-DEBUG> step

+ Assign a constant value to a variable, such as the input signal $<u>.

TLC-DEBUG> assign u = 5.0

+ Set a breakpoint where you are or in some other part of the code.

TLC-DEBUG> break timesN.tlc:10

+ Execute until the next breakpoint.

TLC-DEBUG> continue

* Clear breakpoints you have established.

TLC-DEBUG> clear 1
TLC-DEBUG> clear all

If you have tried the TLC debugger commands, execute the remaining code to finish
the build process, then build simple log again. The build stops at the timesN.tlc
file and displays the command prompt:

TLC-DEBUG>

Debug timesN.tlc

Now look around to find out what is wrong with the code:

1

Set a breakpoint on line 20 of timesN.tlc.

TLC-DEBUG> break timesN.tlc:20

Instruct the TLC debugger to advance to your breakpoint.

TLC-DEBUG> continue

TLC processes input, reports its progress, advances to line 20 in timesN.tlc,
displays the line, and pauses.

Loading TLC function libraries

%%% Initial pass through model to cache user defined code

Caching model source code

3-39

3 Target Language Compiler Tutorials

Breakpoint 1
00020: $roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars

3 Use the whos command to see the variables in the current scope.

TLC-DEBUG> whos
Variables within: <BLOCK LOCAL>

gain Real
rollVars Vector
block Resolved
system Resolved

4 Inspect the variables using the print command (names are case sensitive).

TLC-DEBUG> print gain
3.0

TLC-DEBUG> print rollVars
[u, Y]

5 Execute one step.

TLC-DEBUG> step
00021: %$<LibBlockOutputSignal (0, "", lcv, idx)> = \

6 Because it is a built-in function, advance via the next command.
TLC-DEBUG> next
00022: %$<LibBlockInputSignal (0, "", lcv, idx)> * 1;

This is the origin of the C statement responsible for the erroneous constant output,
simple log B.first output = simple log B.DiscretePulseGenerator *

1;.
7 Abandon the build by quitting the TLC debugger. Type
TLC-DEBUG> quit

An error message is displayed showing that you stopped the build by using the TLC
debugger quit command. Close the error window.

Fix the Bug and Verify

The problem you identified is caused by evaluating a constant rather than a variable
inside the TLC function FcnEliminateUnnecessaryParams (). This is a typical coding
error and is easily repaired. Here is the code you need to fix.

$function Outputs (block, system) Output

%assign gain =SFcnParamSettings.myGain
/* %$<Type> Block: %<Name> */

e
oe

3-40

Debug Your TLC Code

/* Multiply input by %<gain> */
%$assign rollvars = ["U", "Y"]

%$roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars
$<LibBlockOutputSignal (0, "", lcv, idx)> = \
%$<LibBlockInputSignal (0, "", lcv, idx)> * 1;
%endroll
%endfunction

oo
k]

1

[EOF] timesN.tlc
To fix the coding error, edit timesN. t1lc. The line
%$<LibBlockInputSignal (0, "", lcv, idx)> * 1;
multiplies the evaluated input by 1. Change the line to
%<LibBlockInputSignal (0, "", lcv, idx)> * %$<gain>;
Save timesN.tlc.

Build the standalone model again. Complete the build by typing continue at each
TLC-DEBUG> prompt.

Execute the standalone model by typing
!simple log

A new version of simple log.mat is created containing its output.

Load simple log.mat and compare the workspace variable rt yout with yout, as
you did before. The values in the first column should now correspond.

3-41

3 Target Language Compiler Tutorials

TLC Code Coverage to Aid Debugging

3-42

In this section...

“tledebug Execute Tutorial Overview” on page 3-42
“Getting Started” on page 3-42
“Open the Model and Generate Code” on page 3-43

ticdebug Execute Tutorial Overview
Objective: Learn to use TLC coverage statistics to help identify bugs in TLC code.
Folder: matlabroot/toolbox/rtw/rtwdemos/tlctutorial/tlcdebug (open)

This tutorial teaches you how to determine whether your TLC code is being executed as
expected. Here it uses the same model as for the previous tutorial. As you focus on
understanding flow of control in processing TLC files, you don’t need to compile and
execute a standalone model, only to look at code. The tutorial proceeds as follows:

1 Getting Started — Why and how to analyze TLC coverage
2 Open the Model and Generate Code — Read a coverage log file

Getting Started

The Code Generation > Debug pane provides the option Start TLC coverage when
generating code. Selecting it results in a listing that documents how many times each
line in your TLC source file was executed during code generation. The listing, name. log
(where name is the filename of the TLC file being analyzed), is placed in your build
folder.

Note A log file for every . t1c file invoked or included is generated in the build folder.
Focus on timesN. log.

matlab:cd(fullfile(matlabroot,'/toolbox/rtw/rtwdemos/tlctutorial/tlcdebug'))

TLC Code Coverage to Aid Debugging

Open the Model and Generate Code

1 Copy the folder t1ctutorial/tlcdebug/ to your working folder and cd to it. Do
this even though you already have copied it, to be sure you have the version of
timesN. tlc that has the bug.

2 Inthe MATLAB Command Window, create a MEX-file for the S-function.

mex timesN.c

This avoids picking up the version shipped with your Simulink software.
Open the model simple log.

In the Code Generation pane of the Configuration Parameters dialog box, check
Generate code only.

5 Inthe Code Generation > Debug pane of the Configuration Parameters dialog
box, select Start TLC coverage when generating code. (Do not select Start TLC
debugger when generating code. Invoking the debugger is unnecessary.) Click
Apply.

6 Press Ctrl+B. The usual messages appear in the MATLAB Command Window, and
a build folder (simple log grt rtw)is created in your working folder.

7 Enter the build folder. Find the file timesN. 1og, and copy it to your working folder,
renaming it to timesN ilp.log to prevent it from being overwritten.

8 Open the log file timesN ilp.log in your editor. It looks almost like timesN.t1lc,
except for a number followed by a colon at the beginning of each line. This number
represents the number of times TLC executed the line in generating code. The code
for Outputs () should look like this:

0: %% Function: Outputs

0: %%

1: $function Outputs (block, system) Output

1 %assign gain =SFcnParamSettings.myGain

1 /* $<Type> Block: $<Name> */

0 %%

1: /* Multiply input by %<gain> */

1: %assign rollvars = ["U", "Y"]

1 %roll idx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars
1 %$<LibBlockOutputSignal (0, "", lcv, idx)> = \
1 %<LibBlockInputSignal (0, "", lcv, idx)> * 1;
0 %endroll

1:

0: %endfunction

3-43

3 Target Language Compiler Tutorials

3-44

Notice that comments were not executed. TLC statements were reached, which
means they output to the generated C code as many times as the number prefixed to
those lines.

Changing code generation options can cause a latent issue in generated source code.
Systematically changing options and observing the resulting differences in TLC coverage
can facilitate the process of discovering faulty code.

Wrap User Code with TLC

Wrap User Code with TLC

In this section...

“wrapper Tutorial Overview” on page 3-45

“Why Wrap User Code?” on page 3-45

“Getting Started” on page 3-48

“Generate Code Without a Wrapper” on page 3-49

“Generate Code Using a Wrapper” on page 3-50

wrapper Tutorial Overview

Objective: Learn the architecture of wrapper S-functions and how to create an inlined
wrapper S-function using TLC.

Folder: matlabroot/toolbox/rtw/rtwdemos/tlctutorial/wrapper (open)

Wrapper S-functions enable you to use existing C functions without fully rewriting them
in the context of Simulink S-functions. Each wrapper you provide is an S-function “shell”
that merely calls one or more existing, external functions. This tutorial explains and
illustrates wrappers as follows:

* Why Wrap User Code? — Reason for building TLC wrapper functions
+ Getting Started — Set up the wrapper exercise

* Generate Code Without a Wrapper — How the code generator handles external
functions by default

* Generate Code Using a Wrapper — Bypass the API overhead

Why Wrap User Code?

Many Simulink users want to build models incorporating algorithms that they have
already coded, implemented, and tested in a high-level language. Typically, such code is
brought into Simulink as S-functions. To generate an external application that integrates
user code, you can take several approaches:

* You can construct an S-function from user code that hooks it to the Simulink generic
API. This is the simplest approach, but sacrifices efficiency for standalone
applications.

3-45

matlab:cd(fullfile(matlabroot,'/toolbox/rtw/rtwdemos/tlctutorial/wrapper'))

3 Target Language Compiler Tutorials

* You can inline the S-function, reimplementing it as a TLC file. This improves
efficiency, but takes time and effort, can introduce errors into working code, and leads
to two sets of code to maintain for each algorithm, unless you use the Legacy Code
Tool (see “Import Calls to External Code into Generated Code with Legacy Code
Tool”).

* You can inline the S-function via a TLC wrapper function. By doing so, you need to
create only a small amount of TLC code, and the algorithm can remain coded in its
existing form.

The next figure illustrates how S-function wrappers operate.

3-46

Wrap User Code with TLC

Simulink
Place the name of your S-function
in the S-function block's dialog box.

wrapper.slx

O— wrapsfcn [—O

S-function

]
1
1
In Simulink, the S-function :
calls md10utputs, which
inturn calls my_alg. 1
v

Simulink Coder

wrapper . c, the generated code,
calls md10utputs,

which then callsmy_alg.

wrapsfcn.c

ﬁdiOutputs(...)
{

my_alg();

v

wrapper.c
*See note below rﬁ(;iiOutputS(cen)
“““““ {
my_alg();
In the TLC wrapper

version of the S-function,
md1lOutputs in
wrapper.exe callsmy_alg.

md1lOutputsin

wrapsfcn.mex my_alg.c
calls external v
function my_alg. R Eeal_T my_alg(real_T u)

}

y=Ff (u);

*The dotted line is the path taken if the S-function does not have a TLC wrapper
file. If there is no TLC wrapper file, the generated code calls md10utputs.

Wrapping a function eliminates the need to recode it, requiring only a bit of extra TLC
code to integrate it. Wrappers also enable object modules or libraries to be used in S-
functions. This may be the only way to deploy functions for which source code is

unavailable, and also allows users to

distribute models to others without divulging

implementation details that may be proprietary.

For example, you might have an existing object file compiled for a processor on which
Simulink does not run. You can write a dummy C S-function and use a TLC wrapper that

3-47

3 Target Language Compiler Tutorials

3-48

calls the external function, despite not having its source code. You could similarly access
functions in a library of algorithms optimized for the target processor. Accomplishing this
requires making changes to a template makefile, or otherwise providing a means to link
against the library.

Note Object files that lack source code and are created with Microsoft® Visual C and
Microsoft Visual C++® Compiler (MSVC) work only with MSVC.

The only restriction on S-function wrappers is for the number of block inputs and outputs
match number of inputs and outputs of the wrapped external function. Wrapper code
may include computations, but usually these are limited to transforming values (for
example, scaling or reformatting) passed to and from the wrapped external functions.

Getting Started

In the example folder, the “external function” is found in the filemy alg.c. You are also
provided with a C S-function called wrapsfcn. c that integrates my alg.c into
Simulink. Set up the exercise as follows:

1 Make tlctutorial/wrapper your current folder.

2 In MATLAB, open the model externalcode from your working folder. The block
diagram looks like this:

[
Scope

ﬁu » wrapsfcn »(1)

Sin S-Function Out

3 Activate the Scope block by double-clicking it.

4 Run the model (from the Simulation menu, or type Ctrl+T). You will get an error

telling you that wrapsfcn does not exist. Can you figure out why?

5 The error occurs because a mex file does not exist for wrapsfcn. To rectify this, in

the MATLAB Command Window type

mex wrapsfcn.c

Wrap User Code with TLC

Note An error might occur if you have not previously run mex -setup.

6 Run the simulation again with the S-function present.

The S-Function block multiplies its input by two. Looking at the Scope block, you see a
sine wave that oscillates between -2.0 and 2.0. The variable yout that is created in your
MATLAB workspace steps through these values.

In the remainder of the exercise, you build and run a standalone version of the model,
then write some TLC code that allows the code generator to build a standalone
executable that calls the S-function my alg.c directly.

Generate Code Without a Wrapper

Before creating a wrapper, generate code that uses the Simulink generic API. The first
step is to build a standalone model.

1

Choose Code > C/C++ Code > Build Model.

The code generator creates the standalone program in your working folder and
places the source and object files in your build folder. The file will be called
externalcode.exe on Microsoft Windows® platforms or externalcode on UNIX
platforms.

As it generates the program, the code generator reports its progress in the MATLAB
Command Window. The final lines are:

Created executable: externalcode.exe
Successful completion of build procedure
for model: externalcode

Run the standalone program to see that it behaves the same as the Simulink
version. There should not be differences.

lexternalcode

** starting the model **
** created externalcode.mat **

Notice this line in wrapsfcn.c:

#include "my alg.c"

This pulls in the external function. That function consists entirely of

3-49

3 Target Language Compiler Tutorials

3-50

/*
* Copyright 1994-2002 The MathWorks, Inc.
*/

double my alg(double u)
{

return(u * 2.0);

}

Inspect the md10Outputs () function of the code in wrapsfcn.c to see how the
external function is called.

static void mdlOutputs (SimStruct *S, int tid)
{

int T i;

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
real T *y = ssGetOutputPortRealSignal (S,0);
int T width = ssGetOutputPortWidth(s,0);

*y = my alg(*uPtrs[0]);

Tip For UNIX platforms, run the executable in the Command Window with the
syntax ! ./executable name. If preferred, run the executable from an OS shell with

the syntax . /executable name. For more information, see “Run External Commands,
Scripts, and Programs” (MATLAB).

Generally, functions to be wrapped are either included in the wrapper, as above, or, when
object modules are being wrapped, resolved at link time.

Generate Code Using a Wrapper

To create a wrapper for the external function my alg.c, you need to construct a TLC file
that embodies its calling function, wrapsfcn.c. The TLC file must generate C code that
provides:

* A function prototype for the external function that returns a double, and passes the
input double u.

* A function call tomy alg () in the outputs section of the code.

To create a wrapper for my alg(), do the following:

Wrap User Code with TLC

1 Open the file change wrapsfcn.tlc in your editor, and add lines of code where
comments indicate to create a workable wrapper.

2 Save the edited file as wrapsfcn.tlc. It must have the same name as the S-
function block that uses it or TLC is not called to inline code.

3 In MATLAB, open the model externalcode from your working folder. Activate the
Scope block by double-clicking it, and run the model (from the Simulation menu, or
type Ctrl+T). This gives you a baseline result.

4 Inform Simulink that your code has an external reference to be resolved. To update
the model’s parameters, in the MATLAB Command Window, do one of the following:

+ Type

set param('externalcode/S-Function', 'SFunctionModules', 'my alg')

* In the S-Function block parameters dialog box, in the S-function modules
field, specify 'my alg'.

5 Create the standalone application, by entering one of the following commands in the
Command Window:

rtwbuild('my alg', 'ForceTopModelBuild', true)

slbuild('my alg', 'StandaloneRTWTarget', 'ForceTopModelBuild', true)

These commands force the code generator to rebuild the top model, which is required
when you make changes associated with external or custom code.

Alternatively, you can force regeneration of top model code by deleting folders in the
code generation folder (Simulink), such as s1prj or the generated model code folder.

For more information, see “Control Regeneration of Top Model Code”.

6 Run the new standalone application and verify that it yields identical results as in
the scope window.

'externalcode
If you had problems building the application:

+ Find the error messages and try to determine what files are at fault, paying attention
to which step (code generation, compiling, linking) failed.

* Be sure you issued the set param() command as specified above.

3-51

3 Target Language Compiler Tutorials

* Chances are that problems can be traced to your TLC file. It may be helpful to use
TLC debugger to step through wrapsfcn.tlc.

* As alast resort, look at wrapsfcen.tlcin the solutions/tlc solution folder,
also listed below:

File : wrapsfcn.tlc
Abstract:
Example tlc file for S-function wrapsfcn.c

Copyright 1994-2002 The MathWorks, Inc.

o d° o° o° d° o° o
d° 00 o° o0 o° o o

$implements "wrapsfcn" "C"

Function: BlockTypeSetup
Abstract:
Create function prototype in model.h as:
"extern double my alg(double u);"

oC o° o° o° o°

d® o° o° d° d° o

function BlockTypeSetup (block, system) void

openfile buffer

ASSIGNMENT: PROVIDE A LINE OF CODE AS A FUNCTION PROTOTYPE
FOR "myialg" AS DESCRIBED IN THE WRAPPER TLC ASSIGNMENT
extern double my_ alg(double u);

o oo oe
o oo

%closefile buffer
$<LibCacheFunctionPrototype (buffer) >
$endfunction %% BlockTypeSetup

Function: Outputs
Abstract:

y = my alg(u);

o oo o° o° oo
o® o° oo o

function Outputs(block, system) Output

/* %$<Type> Block: %<Name> */

%assign u = LibBlockInputSignal (0, "™, "", 0)
%assign y = LibBlockOutputSignal (0, "", "", 0)
%% PROVIDE THE CALLING STATEMENT FOR "wrapfcn"
%<y> = my_alg(%<u>);

)

%$endfunction %% Outputs

3-52

Wrap User Code with TLC

Look at the highlighted lines. Did you declare my alg() as extern double? Did you
call my alg () with the expected input and output? Fix mistakes and rebuild the
model.

3-53

Code Generation Architecture

* “Build Process” on page 4-2

* “Configure TLC” on page 4-6

* “Code Generation Concepts” on page 4-8
+ “TLC Files” on page 4-13

* “Data Handling with TLC” on page 4-17

4 Code Generation Architecture

Build Process

4-2

In this section...

“Build Process Overview” on page 4-2

“Create and Use Target Language File” on page 4-2

Build Process Overview

TLC compiles files written in the target language. The target language is an interpreted
language and the compiler operates on source files every time it executes. You can make
changes to a target file and watch the effects of your change the next time you build a

model. You do not need to recompile TLC binary or other large binary to see the changes.

Because the target language is an interpreted language, some statements might not be
compiled or executed (and hence not checked by the compiler). For example:

$if 1

Hello
%else

%<Invalid function call()>
%endif

In this example, the Invalid function call statement will not be executed. This
example emphasizes that you should test TLC code with test cases that execute every
line.

Create and Use Target Language File

This example creates a target language file that generates specific text from a model. It
shows the sequence of steps that you should follow in creating and using your own target
language files.

Process
To begin, create the Simulink model shown in the next figure.

Ot 1

Constant Zain

Build Process

Save the new model in a working folder as basic.
Display the Configuration Parameters dialog box.

Select the Solver pane.

A WODN =

In the Solver pane:

Select Fixed-step in the Type field.
b Select discrete (no continuous states) in the Solver field.

¢ Under Additional options, specify 0.1 in the Fixed-step size field.
(Otherwise, the code generator posts a warning and supplies a value when you
generate code.)

5 Click Apply.
6 Select the Code Generation pane.

7 Select Retain .rtw file, then click Apply. This step lets you inspect the contents of
the model. rtw file after the build finishes.

8 Select Generate code only, then click OK.
9 Build the model.

The build process generates code in the basic grt rtw folder. You can see the progress
in the MATLAB Command Window. When code generation is complete, following
message 1s displayed:

Successful completion of code generation for model: basic
The slbuild Command

Invoke s1build by pressing Ctrl+B in the model window. However, some circumstances
may require you to execute s1build directly from the MATLAB prompt.

To generate a model . rtw file from the MATLAB prompt, type:

slbuild ('model")

You can specify other options to s1build that build or rebuild model reference
simulation targets or a stand-alone executable. For more information, type:

help slbuild

at the MATLAB prompt or see slbuild in the Simulink documentation.

4-3

4 Code Generation Architecture

Viewing the basic.rtw file

A model. rtw file contains a hierarchy of labeled records and fields. Each record is
delimited by brackets, and contains subordinate records and/or fields. The labels state
the purpose of each record and field. The records and fields in the model . rtw file created
for a model describe various details of the model and the Configuration Parameter
settings that specify its context.

Open the file . /basic_grt rtw/basic.rtw,in MATLAB or a text editor.

Create the Target File

Note The following exercise is provided to give a conceptual overview of how the .rtw
file is used in the build process. The code generator does not support manually invoking
TLC with a . rtw file created from an earlier build. Additionally, the contents of the . rtw
file are undocumented and subject to change. The basic.tlc file is used to show how
information provided in a . rtw file can be accessed by the TLC files and executed as part
of the build process.

Next, create a basic.tlc file to act as a target file for this model. Instead of generating
code, simply display some information about the model using this file. The concept is the
same as used in code generation.

Create a file called basic. tlc in the folder containing basic. This file should contain
the following lines:

$with CompiledModel

My model is called %<Name>.

It was generated on %<GeneratedOn>.

It has $%$<NumModelOutputs> output(s) and %$<NumContStates> continuous state(s).

%endwith

Note In the build process, the . t1c file specified on the command line when TLC is
invoked (for example, grt.tlc) is referred to as the System Target File (STF). It can be
selected via the System target file browser option in the Code Generation pane of the
Configuration Parameters dialog box.

Build Process

In this example, you generate the . rtw file as part of the build process and then
manually run TLC using the file basic.tlc as an example STF. basic. t1lc illustrates
(in a limited capacity) how . rtw file information is used to generate an example output.
To do this, enter at the MATLAB prompt:

slbuild('basic'")
tlc -r basic grt rtw/basic.rtw basic.tlc -v

The first line generates the . rtw file in the build folder 'basic grt rtw'. This step is
actually unnecessary because the file has already been generated in the previous step;
however, it will be useful if the model is changed and the operation has to be repeated.

The second line runs TLC on the file basic.tlc. The —-r option tells TLC that it should
use the file basic.rtw as the . rtw file. Note that a space must separate -r and the
input filename. The -v option tells TLC to be verbose in reporting its activity.

The output of this pair of commands is (date will differ):

My model is called basic.
It was generated on Wed Jun 22 20:51:11 2005.
It has 1 output(s) and 0 continuous state(s).

You can also try changing the model (for instance, by using rand (2, 2) as the value for
the constant block) and then repeating the process to see how the output of TLC changes.

As you continue through this chapter, you will learn more about creating target files.

4 Code Generation Architecture

Configure TLC

In this section...

“Set Command-Line Arguments” on page 4-6

“Configure for TLC Debugging” on page 4-7

Set Command-Line Arguments

You can enter TLC command-line arguments from the MATLAB command line using the
set param command, the model parameter TLCOptions, and the TLC option -a. For
example, to enter the TLC command-line string ~amyConfigVariable=1, use the
following MATLAB command:

set param(modelName, 'TLCOptions', '-amyConfigVariable=1");
Using -amyConfigVariable=1 is equivalent to coding the following in your target file:
%assign myConfigVariable = 1

Alternatively, you can configure the TLC code generation process by using the -a option
on the TLC command line. That is, you must give the TLC command interactively.

You can repeatedly use the -a option.

For an example of how this process works, consider the following TLC code fragment:

sif !EXISTS (myConfigVariable)
%assign myConfigVariable = 0
sendif
$if (myConfigVariable == 1)
code fragment 1
selse
code fragment 2
sendif

If you specify-amyConfigVariable=1 in the command line, code fragment 1 is
generated; otherwise code fragment 2 is generated. The if block starting with

$if !'EXISTS (myConfigVariable)

serves to set the default value of myConfigvariable to 0, so that TLC does not generate
an error if you forget to add -amyConfigVariable to the command line.

Configure TLC

If you use the -a option to input a string variable, the variable must be enclosed in
double quotation marks:

-aMyStringVariable="hello"

However, if the string contains white space, enclose the string within apostrophes and
double quotation marks:

-aMyStringVariable=""'hello world'"

You must also do this if apostrophes exist within the string, whether or not white space
1s included, and the apostrophes must be escaped (doubled):

-aMyStringVariable=""'can''t"'"

Configure for TLC Debugging

To configure TLC for debugging via the Configuration Parameters dialog, search for the
option Start TLC debugger when generating code. Select Start TLC debugger
when generating code to activate the TLC debugger. For more information, see “Using
the TLC Debugger” on page 7-2 and the debugging topics in “Target Language
Compiler”.

4-7

4 Code Generation Architecture

Code Generation Concepts

4-8

In this section...

“Overview” on page 4-8
“Output Streams” on page 4-8
“Variable Types” on page 4-9
“Records” on page 4-9
“Record Aliases” on page 4-11

Overview

TLC interprets a target language, which is a general programming language, and you
can use it as such. It is important, however, to remember that TLC was designed for one
purpose: to convert a model.rtw file to generated code. Thus, the target language
provides many features that are particularly useful for this task but does not provide
some of the features that other languages like C and C++ provide.

Before you start modifying or creating target files, you might find some of the following
general programming examples useful to familiarize yourself with the basic constructs
used within TLC.

Output Streams

The typical “Hello World” example is rather simple in the target language. Type the
following in a file named hello.tlc:

%$selectfile STDOUT
Hello, World

To run this TLC program, type
tlc hello.tlc
at the MATLAB prompt.

This simple script illustrates some important concepts underlying the purpose (and
hence the design) of TLC. Since the primary purpose of TLC is to generate code, it is
output (or stream) oriented. It makes it easy to handle buffers of text and output them

Code Generation Concepts

easily. In the above script, the $selectfile directive tells TLC to send any following
text that it generates or does not recognize to the standard output device. Syntax that
TLC recognizes begins with the % character. Because Hello, World is not recognized, it
is sent directly to the output. You could just as easily change the output destination to be
a file. The STDOUT stream does not have to be opened, but must be selected to write to
the Command Window.

sopenfile foo = "foo.txt"
sopenfile bar = "bar.txt"
$selectfile foo

This line is in foo.
$selectfile STDOUT

Line has been output to foo.
$selectfile bar

This line is in bar.
%selectfile NULL FILE

This line will not show up anywhere.
$selectfile STDOUT

About to close bar.
$closefile bar

$closefile foo

Note that you can switch between buffers to display status messages. The semantics of
the three directives $openfile, $selectfile, and $closefile are given in “Target
Language Compiler Directives” on page 6-2.

Variable Types

The absence of explicit type declarations for variables is another feature of TLC. See
“Target Language Compiler” for more information on the implicit data types of variables.

Records

One of the constructs most relevant to generating code from the model.rtw fileis a
record. A record is very similar to a structure in C or a record in Pascal. The syntax of a
record declaration is

$createrecord recVar {

fieldl valuel
field2 value?2

4-9

4 Code Generation Architecture

4-10

fieldN valueN ...
}

where recvar is the name of the record being declared, fieldi is a string, and valuei
is the corresponding TLC value.

Records can have nested records, or subrecords, within them. The model. rtw file is
essentially one large record, named CompiledModel, containing levels of subrecords.

Unlike MATLAB, TLC requires that you explicitly load function definitions not located in
the same target file. In MATLAB, the line A = myfunc (B) causes MATLAB to
automatically search for and load a MATLAB file or MEX-file named myfunc. TLC, on
the other hand, requires that you specifically include the file that defines the function
using the $addincludepath directive.

TLC provides a $with directive that facilitates using records. See “Target Language
Compiler” for information on TLC directives.

Note The format and structure of the model. rtw file are subject to change from one
release of the code generator to another.

A record read in from a file is changeable, like other records that you declare in a
program. The record CompiledModel is modified many times during code generation.
CompiledModel is the global record in the model. rtw file. It contains variables used for
code generation, such as NumNonvirtSubsystems, NumBlocks, etc. It is also appended
during code generation with many new variables, options, and subrecords.

Functions such as LibGetFormattedBlockPath are provided in TLC libraries located
in matlabroot/rtw/c/tlc/lib/*.t1lc (open). For a complete list of available
functions, refer to TLC Function Library Reference on “Target Language Compiler”.

Assign Values to Fields of Records

To assign a value to a field of a record, you must use a qualified variable expression. A
qualified variable expression references a variable in one of the following forms:

* An identifier

* A qualified variable followed by “.” followed by an identifier, such as

var[2].b

matlab:cd(fullfile(matlabroot,'/rtw/c/tlc/lib'))

Code Generation Concepts

+ A qualified variable followed by a bracketed expression such as

var [expr]

Record Aliases

In TLC it is possible to create what is called an alias to a record. Aliases are similar to
pointers to structures in C. You can create multiple aliases to a single record.
Modifications to the aliased record are visible to every place that holds an alias.

The following code fragment illustrates the use of aliases:

%createrecord foo field 1 }
%$createrecord a {
%$createrecord b {

%$createrecord c {

— e o

%addtorecord a foo foo
%addtorecord b foo foo
%$addtorecord ¢ foo { field 1 }

% notice we are not changing field through a or b.

o
°
>
°

assign foo.field = 2

ISALIAS (a.foo) = %<ISALIAS (a.foo)>
ISALIAS (b.foo) = %<ISALIAS (b.foo)>
ISALIAS (c.foo) = %<ISALIAS (c.foo)>

a.foo.field = %<a.foo.field>
b.foo.field = %<b.foo.field>
c.foo.field = %<c.foo.field>
%% note that c.foo.field is unchanged

Saving this script as record_alias.tlc and invoking it with
tlc -v record alias.tlc

produces the output

ISALIAS (a.foo) =1
ISALIAS (b.foo) =1
ISALIAS (c.foo) = 0

a.foo.field = 2

4-11

4 Code Generation Architecture

4-12

b.foo.field = 2
c.foo.field

Il
=

When inside a function, it is possible to create an alias to a locally created record that is
within the function. If the alias is returned from the function, it remains valid even after
exiting the function, as in the following example:

%function func(value) Output
$createrecord foo { field value }
$createrecord a { foo foo }

ISALIAS (a.foo) = $%<ISALIAS (a.foo)>
$return a.foo
%$endfunction
%assign x = func(2)
ISALIAS (x) = %<ISALIAS (x)>
X = %<x>

x.field = %<x.field>
Saving this script as alias func.tlc and invoking it with

tlc -v alias_ func.tlc

produces the output

ISALIAS (a.foo) =1
ISALIAS (x) = 1
x = { field 2 }

x.field = 2

As long as there is some reference to a record through an alias, that record is not deleted.
This allows records to be used as return values from functions.

TLC Files

TLC Files

In this section...

“TLC Program” on page 4-13

“Available Target Files” on page 4-14
“Summary of Target File Usage” on page 4-15
“System Target Files” on page 4-15

TLC Program

TLC works with the Simulink software to generate code as shown in the following figure.

- System target file

- Modelwide TLC files

- Block TLC files

TLC "program" that specifies
how model.rtw is converted
to generated code

I _ Custom S-Function
Simulink ¢ block sfun.c
rtwgen :
to create
model.rtw I
v |
R P Inlined S-function
> TLC.MEX b sfun.tlc

!

Generated code
model.c

and so on

Just as a C program is a collection of ASCII files connected with #include statements
and object files linked into one binary, a TLC program is a collection of ASCII files, also
called scripts. Because TLC is an interpreted language, there are no object files. The

single target file that calls (with the $include directive) other target files used for the

program is called the entry point.

4-13

4 Code Generation Architecture

4-14

Available Target Files

Target files are the set of files that are interpreted by TLC to transform the partial
representation of the model (model. rtw) produced by Simulink into target-specific code.

Target files provide you with the flexibility to customize the code generated by the
compiler to suit your specific needs. For example, if you use the available system target
files, you produce generic C or C++ code from your Simulink model. This executable code
is not platform specific.

Note You should not customize TLC files even though the capability exists to do so. Such
TLC customizations might not be applied during the code generation process and can
lead to unpredictable results. Only customize TLC files you create.

The parameters used in the target files are read from the model. rtw file and looked up
using block scoping rules. You can define additional parameters within the target files,
using the $assign statement.

Target files are written using target language directives. “Target Language Compiler
Directives” on page 6-2 provides complete descriptions of the block scope rules and the
target language directives.

“model.rtw File and Scopes” on page 5-2 describes this file, which is useful for creating
and/or modifying target files.

Model-Wide Target Files and System Target Files

Model-wide target files are used on a model-wide basis and provide basic information to
TLC, which transforms the model. rtw file into target-specific code.

The system target file is the entry point for TLC. It is analogous to the main () routine of
a C program. System target files oversee the entire code generation process. For example,
the system target file grt.t1lc sets up some variables for codegenentry.tlc, which is
the entry point into the system target files. For a complete list of available system target
files, see “Compare System Target File Support”.

TLC Files

Summary of Target File Usage

In the context of code generation, there are two types of target files: system target files
and block target files.

+ System target files

System target files determine the overall framework of code generation. They
determine when blocks are executed, how data is logged, and so on.

* Inline an S-function

Inlining an S-function means writing a target file that tells TLC how to generate code
for that S-Function block. The compiler can automatically generate code for
noninlined C MEX S-functions. However, if you inline a C MEX S-function, the
compiler can generate more efficient code. Noninlined C MEX S-functions execute
using the S-function application program interface (API) and can be inefficient. You
can inline a MATLAB file or Fortran S-function; TLC can generate code for the S-
function in both these cases.

+ Customize the code generated for all models

You might want to instrument the generated code for profiling, or make other changes
to overall code generation for all models. To accomplish such changes, you must
modify some of the system target files.

System Target Files

The entire code generation process starts with the single system target file that you
specify in the Code Generation pane of the Configuration Parameters dialog box.
Normally, you click the Browse button to activate the system target file browser for this
purpose. A close examination of a system target file reveals how code generation occurs.
This is a listing of the noncomment lines in grt. t1lc, the target file to generate code for
a generic real-time executable:

$selectfile NULL FILE
%assign TargetType = "RT"
%assign Language = "c"
%assign MatFileLogging = 1
%$include "codegenentry.tlc"

4-15

4 Code Generation Architecture

4-16

The three variables, Language, TargetType, and MatFilelLogging, are global TLC
variables used by other functions. Code generation is then initiated with the call to
codegenentry.tlc, the main entry point for code generation.

If you want to make changes to modify overall code generation, you must change the
system target file. After the initial setup, instead of calling codegenentry.tlc, you
must call your own TLC files. The following code shows an example system target file
called mygrt.tlc.

Set up variables, etc.

Load my library functions

Note that mylib.tlc should %$include funclib.tlc at the
beginning.
nclude "mylib.tlc"
nclude "commonsetup.tlc"

o d° o oe

o0 o° o° o° o o

EE

Next, you can include TLC files that you need for
preprocessing information about the model and to f£ill in
hooks. The following is an example of including a single
TLC file that contains custom hooks.

include "myhooks.tlc"

o° o0 o° o oo
o d° oo oP

% Finally, call the code generator.
include "commonentry.tlc"

o° oo

Generated code is placed in a model or subsystem function. The relevant generated
function names and their execution order are described in “Execution of Code Generated
from a Model” and “Entry-Point Functions and Scheduling”. During code generation,
functions from each of the block target files are executed and the generated code is placed
in model or subsystem functions.

Data Handling with TLC

Data Handling with TLC

In this section...

“Matrix Parameters” on page 4-17

“Code Generator Matrix Parameters” on page 4-17

Matrix Parameters

MATLAB, Simulink, and the code generator use column-major ordering for array storage
(1-D, 2-D, ...), so that the next element of an array in memory is accessed by
incrementing the first index of the array. For example, these element pairs are stored
sequentially in memory: A (i) and A(i+1),B(i,J) andB(i+1,3),C(i,Jj, k) andC (i
+1, 7, k). For more information on the internal representation of MATLAB data, see
“MATLAB Data” (MATLAB) in the MATLAB External Interfaces document.

Code Generator Matrix Parameters

Simulink and code generator internal data storage formatting differs from MATLAB
internal data storage formatting only in the storage of complex number arrays. In
MATLAB, the real and imaginary parts are stored in separate arrays, while in the
Simulink and code generator products they are stored in an "interleaved" format, where
the numbers in memory alternate real, imaginary, real, imaginary, and so forth. This
convention allows efficient implementations of small signals on Simulink lines and for
Mux blocks and other "virtual" signal manipulation blocks (i.e., they don't actively copy
their inputs, merely the references to them).

The compiled model file, model. rtw, represents matrices as strings in MATLAB syntax,
with no implied storage format. This is so you can copy the string out of an . rtw file and
paste it into MATLAB code and have it recognized by MATLAB.

TLC declares Simulink block matrix parameters as scalar or 1-D array variables

real T scalar;
real T mat[nRows * nCols];

where real T can be an arbitrary data type supported by Simulink, and will match the
variable type given in the model file.

For example, the 3-by-3 matrix in the Look-Up Table (2-D) block

4-17

4 Code Generation Architecture

1 2 3
4 5 6
7 8 9

1s stored in model.rtw as

Parameter {

Name "OutputValues"
Value Matrix (3, 3)
(fr.o0, 2.0, 3.01;, (4.0, 5.0, 6.0]; [7.0, 8.0, 9.0];]
String "
StringType "Variable"
ASTNode {
IsNonTerminal 0
Op SL NOT INLINED
ModelParameterIdx 3

}
and results in this definition in model.h

typedef struct Parameters tag ({
real T sl Look Up Table 2 D Table[9];
/* Variable:sl Look Up Table 2 D Table
* External Mode Tunable:yes
* Referenced by block:
* <S1>/Look-Up Table (2-D
*/

[... other parameter definitions ...]
} Parameters;

The model.h file declares the actual storage for the matrix parameter and you can see
that the format is column-major. That is, read down the columns, then across the rows.

4-18

Data Handling with TLC

1 2 3

4 5 6

7 8 9
Parameters model P = {

/* 3 x 3 matrix sl Look Up Table 2 D Table */
{1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0 1},
[... other parameter declarations ...]

b

TLC accesses matrix parameters via LibBlockMatrixParameter and
LibBlockMatrixParameterAddr, where

LibBlockMatrixParameter (Outputvalues, "", "", 0, "", "", 1) returns
"model P.sl Look Up Table 2 D Table[nRows]" (automatically optimized from
"[0+nRows*1]") and

LibBlockMatrixParameterAddr (Outputvalues, "", "", 0, "", "", 1)
returns "smodel P.sl Look Up Table 2 D Table[nRows]" for both inlined and
noninlined block TLC code.

Matrix parameters are like other TLC parameters in that only those parameters
explicitly accessed by a TLC library function during code generation are placed in the
parameters structure. So, following the example, s1 Look Up Table 2 D Table is not
declared unless it is explicitly accessed by LibBlockParameter or
LibBlockParameterAddr.

4-19

model . rtw File and Authoring S-
Functions and Data Objects

* “model.rtw File and Scopes” on page 5-2
+ “Data Object Information in model.rtw” on page 5-6
+ “Data References in the model.rtw File” on page 5-11

+ “Exception to Using the Library Functions that Access model.rtw” on page 5-13

5 model.rtw File and Authoring S-Functions and Data Objects

model.rtw File and Scopes

The code generation software creates a model . rtw file from your Simulink model. A
model . rtw file is a partial representation of a model generated by the build process for
use by the Target Language Compiler. It describes blocks, inputs, outputs, parameters,
states, storage, and other model components and properties from the corresponding
model file.

The generated model. rtw file is input to the Target Language Compiler. If you select
Retain .rtw file from the Configuration Parameters > Code Generation pane, after
building a model, you can view the model . rtw file that was generated.

A model. rtw file is implemented as an ASCII file of parameter-value pairs stored in a
hierarchy of records. A parameter name/parameter value pair is specified as

ParameterName value

where ParameterName (also called an identifier) is the name of the TLC identifier and
value is a string, scalar, vector, or matrix. For example, in the parameter name/
parameter value pair

NumDataOutputPorts 1
NumDataOutputPorts is the identifier and 1 is its value.

A record is specified as

RecordName ({

}

A record contains parameter name/parameter value pairs and/or subrecords. For
example, this record contains one parameter name/parameter value pair:

DataStores {
NumDataStores 0

}

Note The structure of the model . rtw file is very likely to change between releases,
which is a compelling reason to limit your access to model. rtw to the library functions

model.rtw File and Scopes

documented under TLC Function Library Reference: “Target Language Compiler”. For
additional information, see “Exception to Using the Library Functions that Access
model.rtw” on page 5-13.

Scopes in the model.rtw File

Each record creates a new scope. The model.rtw file uses curly braces { and } to open
and close records (or scopes). Using scopes, you can access values within the model.rtw
file.

The scope in this example begins with CompiledModel. Use periods (.) to access values
within particular scopes. The format of model.rtw is

CompiledModel ({

Name "modelname" -—- Example of a parameter-value
... pair (record field).
System { -- There is one system for each
nonvirtual subsystem.
Block { -—- Block records for each
Type "S-Function" nonvirtual block in the
system.
Name "<S3>/S-Function"

Parameter {

Name "P1"
Value Matrix(1,2) [[1, 2];]
}
Block {
}
}
System { -- The last system is for the

root of your model.

For example, to access Name within CompiledModel, you would use
CompiledModel.Name

Multiple records of the same name form a list where the index of the first record starts at
0. To access the above S-function block record, you would use

5-3

5 model.rtw File and Authoring S-Functions and Data Objects

CompiledModel.System[0] .Block[0]

To access the name field of this block, you would use

CompiledModel.System[0] .Block[0] .Name

To simplify this process, you can use the $with directive, which changes the current
scope. For example:

$with CompiledModel.System[0].Block[0]
%assign blockName = Name
%endwith

blockName will have the value "<S3>/S-Function".

When inlining S-function blocks, your S-function block record is scoped as though the
above $with directive was done. In an inlined . t1c file, you should access fields without
a fully qualified path.

The following code shows a more detailed scoping example where the Block record has
several parameter-value pairs (Type, Name, Identifier, and so on), and three
subrecords, each called Parameter. Block is a subrecord of System, which is a
subrecord of CompiledModel. Note that the parameter names in this file changes from
release to release.

model.rtw File and Scopes

»

Scope 1| -

Scope 2| g
Scope 3|

Scope 4|

CompiledModel {
Name

System {

Type

Name

Identifier

NumBlocks

Block {
Type
Name

Parameters
Parameter {
Name

}
Parameter {
Name

Parameter {
Name

"simple"

root
"<root>"
root

3

Sin
"<Root>/Sine Wave"

[3, 3, 0]

"Amplitude"”

"Frequency"

"Phase"

5-5

5 model.rtw File and Authoring S-Functions and Data Objects

Data Object Information in model.rtw

5-6

In this section...

“Data Object Overview” on page 5-6
“Object Records for Parameters” on page 5-6

“Object Records for Signals” on page 5-8

“Access Data Object Information via TLC” on page 5-9

Data Object Overview

During the build process, the code generator writes information about Simulink signal
and parameter data objects to the model.rtw file. An Object record with CoderInfo
property information is written for each parameter or signal that meets certain
conditions. These conditions are described in “Object Records for Parameters” on page 5-
6 and “Object Records for Signals” on page 5-8.

The Object records contain the information corresponding to the associated data object.
To access Object records, you must write Target Language Compiler code (see “Access
Data Object Information via TLC” on page 5-9).

For some data, defining custom storage classes can be a helpful approach. For more
information, see “Define Advanced Custom Storage Classes Types” (Embedded Coder).
Note that this support requires an Embedded Coder license.

Note The Object record examples in this section are generated from the example model
rtwdemo_ advsc, with model button ExportedGlobal Storage Class double-clicked
and model option Retain .rtw file selected. (Do not use the example model buttons to
build the model, as they modify model options, including Retain .rtw file.)

Object Records for Parameters

An Object record with CoderInfo property information is included in the
ModelParameters section of the model. rtw file for each parameter that meets the
following conditions:

* The parameter resolves to a Simulink.Parameter data object (or to a parameter
data object that comes from a class derived from the Simulink.Parameter class).

matlab:rtwdemo_advsc

Data Object Information in model.rtw

* The parameter symbol is preserved in the generated code. The symbol is preserved
when the CoderInfo.StorageClass property of the data object is not set to "Auto"
or "SimulinkGlobal™.

The following example shows part of an Object record for a parameter. A real record
contains more fields than appear in the example.

ModelParameters {
NumParameters 10

Parameter
Identifier "LOWER"
LogicalSrc P5
WorkspaceVarName "LOWER"
Protected no
Tunable yes
StorageClass "ExportedGlobal"
Value [-10.0]
ContainerCGTypeldx 39
ReferencedBy Matrix(1,4)
(1, -1, 1, 0171
GraphicalRef Matrix (1,2)
[0, 147];]
GraphicalSource [-1, -1]
OwnerSysIdx [1, -11]
HasObject 1
Object {
Package Simulink
Class Parameter
ObjectProperties {
Value -10.0
CoderInfo {
Object {
Package Simulink
Class CoderInfo
ObjectProperties {
StorageClass "ExportedGlobal"
TypeQualifier "
Alias "
Alignment -1
CSCPackageName "Simulink"
ParameterOrSignal "Parameter"
CustomStorageClass "Default"
CustomAttributes {
Object {
Package SimulinkCSC
Class AttribClass_Simulink Default
ObjectProperties {

5-7

5 model.rtw File and Authoring S-Functions and Data Objects

5-8

Object Records for Signals

An Object record with CoderInfo property information is included in either the
ExternalOutputs, ExternalInputs, or BlockOutputs section of the model. rtw file
for each signal (including root-level Inport and Outport blocks) whose symbol is
preserved in the generated code. The symbol is preserved when the signal uses a storage
class other than Auto. If the signal is configured to be an unstructured global variable in
the generated code, its validity and uniqueness are enforced and its symbol is preserved.

The following example shows part of an Object record for a root-level Outport block. A
real record contains more fields than appear in the example.

ExternalOutputs {
NumExternalOutputs 1
ExternalOutput {
ArgSrc YO0
Block [1,3]
BlockName "<Root>/Outl"
Identifier "output"
OrigIdentifier "output"
StorageClass "ExportedGlobal"
ResolvedToSignalObject embedded
HasObject 1
Object {
Package Simulink
Class Signal
ObjectProperties {
CoderInfo {
Object {
Package Simulink
Class CoderInfo
ObjectProperties {
StorageClass "ExportedGlobal"
TypeQualifier "
Alias "
Alignment -1
CSCPackageName "Simulink"
ParameterOrSignal "Signal"
CustomStorageClass "Default"
CustomAttributes {
Object {
Package SimulinkCSC
Class AttribClass_Simulink Default
ObjectProperties {

}
}

Data Object Information in model.rtw

Access Data Object Information via TLC

This section provides sample code to illustrate how to access data object information from
the model. rtw file using TLC code.

Access Parameter Object Records

The following code fragment iterates over Parameter structures in the
ModelParameters section of the model. rtw file and extracts information from
parameter Object records encountered.

$with CompiledModel.ModelParameters
%foreach modelParamIdx = NumParameters
%assign thisModelParam = Parameter [modelParamIdx]
%assign paramName = thisModelParam.Identifier
%$if EXISTS ("thisModelParam.Object.ObjectProperties"
$with thisModelParam.Object.ObjectProperties
%$assign valueInObject = Value
$with CoderInfo.Object.ObjectProperties
%assign storageClassInObject = StorageClass
$endwith

QG ok ok ok ok ok ok kK kK K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok ok ok kK K

%% Access user-defined properties here
Khkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkkkhkhkkhkkkk*k

%assign userDefinedPropertyName = MY PROPERTY NAME
%endif

QG ok ok ok ok ok ok kK kK K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK K

$endwith
%endif
%endforeach
$endwith

Access Signal Object Records

The following code fragment iterates over ExternalBlockOutput structures in the
BlockOutputs section of the model. rtw file and extracts information from signal
Object records encountered.

$with CompiledModel.BlockOutputs

%foreach blockOutputIdx = NumExternalBlockOutputs
%$assign thisBlockOutput = ExternalBlockOutput [blockOutputIdx]

5-9

5 model.rtw File and Authoring S-Functions and Data Objects

%assign signalName = thisBlockOutput.Identifier
%$if EXISTS ("thisBlockOutput.Object.ObjectProperties"
$with thisBlockOutput.Object.ObjectProperties
$with CoderInfo.Object.ObjectProperties
%$assign storageClassInObject = StorageClass
endwith \
***********************************\

Access user-defined properties here\
Kkhkhkhkkhkhkkhkhkhkhkhkkhkhhkhkhkkhkhkhkhhkhkhkhkhkhkhkhkhkkhhkkx*k
if EXISTS ("MY_PROPERTY_ NAME")
%$assign userDefinedPropertyName = MY PROPERTY NAME

endif
% Kk hkhkkhkhkhkhkhkhhkkhkhhkhkhkkhkhkhkhhkhkhkhkhkhkhkhkhkkhhkkx*k

%endwith

%endif
%endforeach

%endwith

ol do de de de
oo de de

do o

5-10

Data References in the model.rtw File

Data References in the model.rtw File

In this section...

“Data Reference Overview” on page 5-11
“Control the Data Reference Threshold” on page 5-11
“Expand Data References” on page 5-12

“Avoid Data Reference Expansion” on page 5-12

“Restart Code Generation” on page 5-12

Data Reference Overview

Some records in a model . rtw file, such as those corresponding to parameters and
constant block I/0, can have extremely large data value vectors embedded in them. Such
a vector can cause significant memory overhead during code generation because the
values must be maintained as text in memory during this process.

To avoid such overhead, by default the Simulink software does not write out the entire
data value vector into model.rtw. Instead, it writes a key called a data reference that
can be used during code generation to access the data directly from Simulink. If the data
is not mutated during code generation, it is efficiently streamed to disk when the actual
code containing the data values is written out.

A data reference has the format SLData (index), where indexis a numeric value that
tells Simulink which data is being referenced. TLC directives such as

GENERATE FORMATTED VALUE store data references in unexpanded format in memory.
When the generated code is written out to disk, the data values expand to the actual
values.

Control the Data Reference Threshold

By default, Simulink writes a data reference to model.rtw in place of a data vector
whose length is 10 or more. To change the maximum length of a vector that can appear
literally in the file, use:

set param(0, 'RTWDataReferencesMinSize', maxlen)

Simulink replaces a vector as long or longer than maxlen with a data reference when it
creates model.rtw. Specify maxlen as an integer or as inf. Specifying inf disables

5-11

5 model.rtw File and Authoring S-Functions and Data Objects

5-12

data references. The complete value set of every vector, however long, then appears
literally in model . rtw and occupies text memory during code generation.

Setting an explicit maxlen affects only the current MATLAB session. To set the value
across sessions, include a set _param command in your startup.m file, or automate
execution of the command when MATLAB launches.

Expand Data References

You can explicitly expand a data reference by using the GENERATE FORMATTED VALUE
built-in function with the optional third expand argument. Commands such as FEVAL
may cause a data reference to be expanded to the full form.

Avoid Data Reference Expansion

Either turning off data references completely or expanding select parameters in TLC can
cause significant text memory overhead during the code generation process. During most
common code generation tasks, it is unnecessary to have the expanded data vector in
memory and pay the price of the additional overhead. Avoid expanded data vectors
unless no alternative exists.

Restart Code Generation

A model. rtw file that contains data references cannot be used in isolation to restart a
custom code generation process. The data references within it become stale once the code
generation process is completed. Attempting to start a code generation process using only
this file may result in unpredictable behavior and memory segmentation faults.

Exception to Using the Library Functions that Access model.rtw

Exception to Using the Library Functions that Access model.rtw

There are several library functions that provide access to block inputs, outputs,
parameters, sample times, and other information. It is recommended that you use these
library functions to access many of the parameter name/parameter values pairs in the
block record, as opposed to accessing the parameter name/parameter value pairs directly
from your block TLC code. For more information about using these functions
(recommended method for accessing model . rtw), see “Target Language Compiler
Library Functions Overview” on page 9-2.

An exception to using these functions is when you access parameter settings for a block.
Parameter settings can be written out using the md1RTW function of a C MEX S-function.
They can contain data in the form of strings, scalar values, vectors, and matrices. They
can be used to pass fixed values and information that is used to alter the generated code
for a block or directly as values in the resulting code of a block.

The following sections describe this exception in more detail.

In this section...

“Example Exception to Using the Library Functions” on page 5-13
“Caution Against Directly Accessing Record Fields” on page 5-14

Example Exception to Using the Library Functions

The following example demonstrates accessing parameter settings for a block using the
md1RTW function of a C MEX S-function. For more details on using parameter settings,
see “Inlining S-Functions” on page 2-6.

mdIRTW Function in C MEX S-Function Code

static void mdlRTW (SimStruct *S3)

{
if (!ssWriteRTWParamSettings(S, 1, SSWRITE VALUE QSTR, "Operator", "AND")

{
ssSetErrorStatus (S, "Error writing parameter data to .rtw file");
return;

}

Resulting Block Record in model.rtw File

Block {
Type "S-Function"

5-13

5 model.rtw File and Authoring S-Functions and Data Objects

5-14

Name "<Root>/S-Function"

SFcnParamSettings {
Operator "AND"
}
}

TLC Code to Access the Parameter Settings

%$function Outputs(block, system) Output

%%

%% Select Operator

%$switch (SFcnParamSettings.Operator)

%case "AND"

%assign LogicOp = "g"
$break

%endswitch

%endfunction

Caution Against Directly Accessing Record Fields

When functions in the block target file are called, they are passed to the block and
system records for this instance as arguments. The first argument, block, is in scope,
which means that variable names inside this instance’s block record are accessible by
name. For example:

%assign fast = SFcnParamSetting.Fast

Block target files could generate code for a given block by directly using the fields in the
Block record for the block. This process is not recommended, for two reasons:

* The contents of the model. rtw file can change from release to release. This can cause
block TLC files that access the model . rtw file directly to stop working.

* TLC library functions are provided that substantially reduce the amount of TLC code
for implementing a block while handling the various configurations (widths, data
types, etc.) a block might have. These library functions are provided by the system
target files to provide access to inputs, outputs, parameters, and so on. Using these
functions in a block TLC script makes it flexible enough to generate code for multiple
instances or configurations of the block, as well as across releases. Exceptions to this
do occur, however, such as when you want to directly access a field in the block’s
record. This happens with parameter settings, as discussed in “TLC Code to Access
the Parameter Settings” on page 5-14.

Directives and Built-In Functions

You control how code is generated from models largely through writing or modifying
scripts that apply TLC directives and built-in functions. Use the following sections as

your primary reference to the syntax and format of target language constructs, as well as
the MATLAB t1c command itself.

* “Target Language Compiler Directives” on page 6-2

+ “Command-Line Arguments” on page 6-65

6 Directives and Built-In Functions

Target Language Compiler Directives

6-2

In this section...

“Syntax” on page 6-2

“Directives” on page 6-3

“Comments” on page 6-16

“Line Continuation” on page 6-17

“Target Language Value Types” on page 6-18

“Target Language Expressions” on page 6-19

“Formatting” on page 6-26

“Conditional Inclusion” on page 6-26

“Multiple Inclusion” on page 6-27

“Object-Oriented Facility for Generating Target Code” on page 6-32
“Output File Control” on page 6-34

“Input File Control” on page 6-35

“Asserts, Errors, Warnings, and Debug Messages” on page 6-37
“Built-In Functions and Values” on page 6-37

“TLC Reserved Constants” on page 6-48

“Identifier Definition” on page 6-49

“Variable Scoping” on page 6-52

“Target Language Functions” on page 6-61

Syntax

A target language file consists of a series of statements of either form
[text | %<expression>]*

$keyword [argumentl, argument2, ...]

Statements of the first type cause literal text to be passed to the output stream
unmodified, and expressions enclosed in $< > are evaluated before being written to
output (stripped of 3< >).

Target Language Compiler Directives

For statements of the second type, $keyword represents one of the Target Language
Compiler’s directives, and [argumentl, argument2, ...] represents expressions
that define required parameters. For example, the statement

%assign sysNumber = sysIdx + 1
uses the $assign directive to define or change the value of the sysNumber parameter.

A target language directive must be the first nonblank character on a line and begins
with the % character. Lines beginning with %% are TLC comments, and are not passed to
the output stream. Lines beginning with /* are C comments, and are passed to the
output stream.

Directives

The rest of this section shows the complete set of Target Language Compiler directives,
and describes each directive in detail.

%% text

Single-line comment where text is the comment.

1% text%/

Single (or multiline) comment where text is the comment.

%matlab

Calls a MATLAB function that does not return a result. For example, $matlab
disp(2.718).

%<expr>

Target language expressions that are evaluated. For example, if you have a TLC variable
that was created via $assign varName = "foo", then $<varName> would expand to
foo. Expressions can also be function calls, as in $<FcnName (paraml, param2) >. On
directive lines, TLC expressions need not be placed within the $<> syntax. Doing so will
cause a double evaluation. For example, $if %<x> == 3 is processed by creating a
hidden variable for the evaluated value of the variable x. The %1 f statement then
evaluates this hidden variable and compares it against 3. The efficient way to do this
operation is to write $if x == 3.In MATLAB notation, this would equate to writing if

6-3

6 Directives and Built-In Functions

eval ("x') == 3 asopposed toif x = 3. The exception to this is during an $assign for
format control, as in

%assign str = "value is: %<var>"
Note: Nested evaluation expressions (e.g., $<foo ($<expr>)>) are not supported.
There is not a speed penalty for evaluations inside strings, such as
%assign x = "%<expr>"
Avoid evaluations outside strings, such as the following example.
%assign x = %<expr>
%if expr%elseif expr%else%endif

Conditional inclusion, where the constant expression expr must evaluate to an integer.
For example, the following code checks whether a parameter, k, has the numeric value
0.0 by executing a TLC library function to check for equality.

%$if ISEQUAL(k, 0.0)
<text and directives to be processed if k is 0.0>
sendif

In this and other directives, you do not have to expand variables or expressions using the
%<expr> notation unless expr appears within a string. For example,

%if ISEQUAL (idx, "my idx%<i>"), where idx and i are both strings.

As in other languages, logical evaluations do short-circuit (are halted as soon as the
result is known).

%switch expr %case expr %break %default %break %endswitch

The $switch directive is very similar to the C language switch statement. The
expression expr should be of a type that can be compared for equality using the ==
operator. If the $break is not included after a $case statement, then it will fall
through to the next statement.

Target Language Compiler Directives

%with %endwith

$with recordName is a scoping operator. Use it to bring the named record into the
current scope, to remain until the matching $endwith is encountered (3with directives
can be nested as desired).

Note that on the left side of $assign statements contained within a $with/ %endwith
block, references to fields of records must be fully qualified (see “Assign Values to Fields
of Records” on page 4-10), as in the following example.

$with CompiledModel

%assign oldName = name
%assign CompiledModel.name = "newname"
Sendwith

%setcommandswitch string

Changes the value of a command-line switch as specified by the argument string. Only
the following switches are supported:

v, m, Dy, O/ d/ r, I, a
The following example sets the verbosity level to 1.

$setcommandswitch "-v1"
See also “Command-Line Arguments” on page 6-65.
%assert expr

Tests a value of a Boolean expression. If the expression evaluates to false, TLC issues an
error message, a stack trace and exit; otherwise, the execution continues normally. To
enable the evaluation of assertions outside the code generator environment, use the
command-line option -da. When building from within the code generator, this flag is
ignored, as it is superseded by the Enable TLC assertion check box on the TLC
process section of the Code Generation > Debug pane. To control assertion handling
from the MATLAB Command Window, use

set param(model, 'TLCAssertion', 'on]|off')

to set this flag on or off. Default is Off. To see the current setting, use

get param(model, 'TLCAssertion')

6 Directives and Built-In Functions

%error %warning %trace %exit

Flow control directives:

%serror tokens

The tokens are expanded and displayed.
Swarning tokens

The tokens are expanded and displayed.
$trace tokens

The tokens are expanded and displayed only when the verbose output command-line
option -v or -v1 is specified.
%exit tokens

The tokens are expanded, displayed, and TLC exits.

When reporting errors, use the following command if the error is produced by an
incorrect configuration that the user needs to fix in the model.

%exit Error Message

If you are adding assert code (that is, code that should never be reached), use

o)

$setcommandswitch "-v1" %% force TLC stack trace
%exit Assert message

%assign
Creates identifiers (variables). The general form is
%assign [::]variable = expression

The : : specifies that the variable being created is a global variable; otherwise, it is a
local variable in the current scope (i.e., a local variable in the function).

If you need to format the variable, say, within a string based upon other TLC variables,
then you should perform a double evaluation, as in

%assign nameInfo = "The name of this is %<Name>"

or alternately

%assign nameInfo = "The name of this is " + Name

Target Language Compiler Directives

To assign a value to a field of a record, you must use a qualified variable expression. See
“Assign Values to Fields of Records” on page 4-10.

%createrecord

Creates records in memory. This command accepts a list of one or more record
specifications (e.g., { foo 27 }). Each record specification contains a list of zero or more
name-value pairs (e.g., foo 27) that become the members of the record being created.
The values themselves can be record specifications, as the following illustrates.

%createrecord NEW_RECORD { foo 1 ; SUB_RECORD {foo 2} }
%$assign x = NEW_RECORD.foo /* x =1 */
%$assign y = NEW_RECORD.SUB_RECORD. foo /*y =2 */

If more than one record specification follows a given record name, the set of record
specifications constitutes an array of records.

%createrecord RECORD ARRAY { foo 1 }

{ foo 2 }

{ bar 3 }
%$assign x RECORD_ARRAY[1].foo /* x =2 */
%$assign y = RECORD_ARRAY[2].bar /* y =3 */

Note that you can create and index arrays of subrecords by specifying $createrecord
with identically named subrecords, as